【題目】(1)問題發(fā)現(xiàn):如圖(1).在和中,繞點(diǎn)逆時(shí)針旋轉(zhuǎn).為邊的中點(diǎn),當(dāng)點(diǎn)與點(diǎn)重合時(shí).與的位置關(guān)系為 ,與的數(shù)量關(guān)系為 .
(2)問題證明:在繞點(diǎn)逆時(shí)針旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)僅就圖2的情形給出證明,若不成立,請(qǐng)說明理山,
(3)拓展應(yīng)用:在繞點(diǎn)逆時(shí)針旋轉(zhuǎn)旋轉(zhuǎn)的過程中,當(dāng)時(shí),直接寫出的長(zhǎng).
【答案】(1);(2)成立,見解析;(3)或
【解析】
(1)如圖1,延長(zhǎng)BH交AC于點(diǎn)G,根據(jù)直角三角形斜邊上的中線的性質(zhì)及已知條件可得∠BDC=∠ABG=60°,進(jìn)而得到∠A+∠ABG=90°,即可得到BH⊥AE,根據(jù)銳角三角函數(shù)的定義以及直角三角形斜邊上的中線的性質(zhì)即可得到;
(2)延長(zhǎng)至點(diǎn),使,根據(jù)“SAS”證明△DBE≌△PBE,得到,進(jìn)而證明,根據(jù)30°直角三角形的性質(zhì),從而得到,再證明,得到,根據(jù)中位線定理得到,即可得到,;
(3)分兩種情況討論,①①如圖3-1中,當(dāng)DE在BC的下方時(shí),延長(zhǎng)AB交DE于點(diǎn)F,根據(jù)邊角關(guān)系以及勾股定理求出AE2,再根據(jù),即可解答;②如圖3-2中,當(dāng)DE在BC的上方時(shí),同法可得AF,EF的長(zhǎng)度,求出求出AE2,再根據(jù),即可解答.
解:(1)如圖1,延長(zhǎng)BH交AC于點(diǎn)G,
∵點(diǎn)H是Rt△BDC中CD的中點(diǎn),
∴BH=DH,
∵,
∴∠BDC=∠ABG=60°,
∴∠A+∠ABG=90°,
∴∠AGB=90°,即BH⊥AE,
∵在Rt△ABC中,BC=3,∠A=30°,
∴AE=2BC=6,
在Rt△BDE中,∠DEB=30°,
∴CD=,
∵點(diǎn)H為CD的中點(diǎn),
∴BH=,
∴,
∴
故答案為:
(2)成立
證明如下:延長(zhǎng)至點(diǎn),使,
連接分別交于點(diǎn),如圖2所示.
在△DBE與△PBE中,
,
又,
在中,,
,
,
,
為的中點(diǎn),
為中點(diǎn),
,
,
,
.
又,
.
∴(1)中的結(jié)論仍然成立,
(3)①如圖3-1中,當(dāng)DE在BC的下方時(shí),延長(zhǎng)AB交DE于點(diǎn)F,
∵DE∥BC,
∴∠ABC=∠BFD=90°,
由題意可知,BC=BE=3,AB=3,BD=,DE=2,
∴BF=,
EF=,
∴AF=3+,
∴AE2=,
∵,
∴,
∴,
②如圖3-2中,當(dāng)DE在BC的上方時(shí),同法可得AF=,EF= ,
∴AE2=,
∴
綜上所述,BH2為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點(diǎn)為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對(duì)于拋物線C1,以下結(jié)論正確的是 ;
①對(duì)稱軸是:直線x=1;②頂點(diǎn)坐標(biāo)(1,﹣a﹣2);③拋物線一定經(jīng)過兩個(gè)定點(diǎn).
(2)當(dāng)a>0時(shí),設(shè)△ABM的面積為S,求S與a的函數(shù)關(guān)系;
(3)將二次函數(shù)y=ax2﹣2ax﹣2的圖象C1繞點(diǎn)P(t,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點(diǎn)為N.
①當(dāng)﹣2≤x≤1時(shí),旋轉(zhuǎn)前后的兩個(gè)二次函數(shù)y的值都會(huì)隨x的增大而減小,求t的取值范圍;
②當(dāng)a=1時(shí),點(diǎn)Q是拋物線C1上的一點(diǎn),點(diǎn)Q在拋物線C2上的對(duì)應(yīng)點(diǎn)為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在Rt△ABC中,∠C=90,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心作⊙O,使它過A,D兩點(diǎn)(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,AB=3,BD=3,求線段BD、BE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)A的坐標(biāo)為(m,0),且AB=4.
(1)填空:點(diǎn)B的坐標(biāo)為 (用含m的代數(shù)式表示);
(2)把射線AB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,△ABP的面積為8:
①求拋物線的解析式(用含m的代數(shù)式表示);
②當(dāng)0≤x≤1,拋物線上的點(diǎn)到x軸距離的最大值為時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)體自模擬測(cè)試后,隨機(jī)抽取了九年級(jí)部分學(xué)生體有測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下:
成績(jī)/分 | 以下 | |||
成績(jī)等級(jí) |
請(qǐng)根據(jù)以上信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽取了 名學(xué)生的體育測(cè)試成績(jī),補(bǔ)全頻數(shù)分布直方圖
(2)扇形的圓心角的度數(shù)是
(3)若該校九年級(jí)有名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次體育測(cè)試成績(jī)?cè)?/span>等級(jí)以上(含等級(jí))的學(xué)生有多少人?
(4)根據(jù)測(cè)試中存在的問題,通過一段時(shí)間的針對(duì)性調(diào)練,若等級(jí)學(xué)生數(shù)可提高等級(jí)學(xué)生數(shù)可提高,請(qǐng)估計(jì)經(jīng)過訓(xùn)練后九年級(jí)體育測(cè)試成績(jī)?cè)?/span>等級(jí)以上(含等級(jí))的學(xué)生可達(dá)多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了_____小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠B=60°,動(dòng)點(diǎn)P以每秒1個(gè)單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動(dòng)到點(diǎn)B,同時(shí)動(dòng)點(diǎn)Q以每秒2個(gè)單位的速度自點(diǎn)B出發(fā)沿折線B﹣C﹣D運(yùn)動(dòng)到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動(dòng)時(shí),△BPQ的面積S隨時(shí)間t變化關(guān)系圖象,則a的值是( )
A.2B.2.5C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進(jìn)校園”活動(dòng),某校團(tuán)委組織八年級(jí)100名學(xué)生進(jìn)行“經(jīng)典誦讀”選拔賽,賽后對(duì)全體參賽學(xué)生的成績(jī)進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表。
組別 | 分?jǐn)?shù)段 | 頻次 | 頻率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
請(qǐng)根據(jù)所給信息,解答以下問題:
(1)表中a=___,b=___;
(2)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中B組對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績(jī),其中包括來自同一班級(jí)的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級(jí)比賽,請(qǐng)用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB邊上一點(diǎn),F是BC延長(zhǎng)線上一點(diǎn),將△BEF沿EF翻折,使點(diǎn)B恰好落在AD邊上的點(diǎn)G處,FG與CD交于點(diǎn)H,連接BH,與EF交于點(diǎn)M,若BH平分∠CHG,AG=4,則EM=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com