如圖,△ABC中,AB=AC,∠BAC=90°,EC⊥BC,EC=BD,DF=EF.求證:AF⊥DE.
分析:先由等腰直角三角形的性質(zhì)就可以得出∠B=∠ACB=45°,進(jìn)而可以得出∠ACE=45°,就有∠B=∠ACE,就可以得出∠B=∠ACE,就有△ADB≌△ACE,就可以得出AD=AE,∠BAD=∠CAE,就可以得出∠DAE=90°,得出△DAE為等腰直角三角形,由DF=EF就可以得出AF⊥DE.
解答:證明:∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°.
∵EC⊥BC,
∴∠ECB=90°,
∴∠ACE=45°,
∴∠B=∠ACE.
在△ADB和△ACE中
AB=AC
∠B=∠ACE
BD=CE
,
∴△ADB≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE.
∵∠BAD+∠DAC=90°,
∴∠CAE+∠DAC=90°
即∠DAE=90°.
∵AD=AE,
∴△ADE是等腰直角三角形.
∵DF=EF,
∴AF⊥DE.
點(diǎn)評(píng):本題考查了等腰直角三角形的判定及性質(zhì)的運(yùn)用,垂直的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案