如圖,AD∥BC,∠ABC的角平分線BP與∠BAD的角平分線AP相交于點P,作PE⊥AB于點E.若PE=2,則兩平行線AD與BC間的距離為.


4

    解:過點P作MN⊥AD,

∵AD∥BC,∠ABC的角平分線BP與∠BAD的角平分線AP相交于點P,PE⊥AB于點E,

∴AP⊥BP,PN⊥BC,

∴PM=PE=2,PE=PN=2,

∴MN=2+2=4.

故答案為:4.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


某班一次數(shù)學競賽考試成績?nèi)缦卤硭荆阎喙灿?8人,且眾數(shù)為60分,中位數(shù)為70分,則x2-2y=     _

成績(分)

30

40

50

60

70

80

90

100

人數(shù)

2

3

5

x

6

y

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數(shù)為()

      A.                       90° B.                       60° C.                       45° D.   30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


x的2倍與12的差大于6,用不等式表示為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.若∠B=30°,CD=1,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線 m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=120°.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試證明FD=FE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,▱ABCD的對角線AC,BD相交于點O,點E,F(xiàn)分別是線段AO,BO的中點,若AC+BD=24厘米,△OAB的周長是18厘米,則EF=厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一輛汽車沿著一條南北方向的公路來回行駛。某一天早晨從A地出發(fā),晚上到達B地。

約定向北為正,向南為負,當天記錄如下:(單位:千米)

-18.3, -9.5, +7.1, -14, -6.2, +13, -6.8, -8.5

(1)問B地在A地何處,相距多少千米?

(2)若汽車行駛每千米耗油0.2升,那么這一天共耗油多少升?

查看答案和解析>>

同步練習冊答案