如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線 m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=120°.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試證明FD=FE.
證明:(1)∵BD⊥DE,CE⊥DE,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=∠BAD+∠ABD=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴BD=AE,CE=DA,
∴DE=AE+DA=BD+CE;
(2)DE=BD+CE成立.
理由:∵∠BDA=∠BAC=90°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE;
(3)△DEF為等邊三角形
理由:∵△ABF和△ACF均為等邊三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中
,
∴△DBF≌△EAF(SAS)
∴DF=EF.
科目:初中數(shù)學 來源: 題型:
如圖,AD∥BC,∠ABC的角平分線BP與∠BAD的角平分線AP相交于點P,作PE⊥AB于點E.若PE=2,則兩平行線AD與BC間的距離為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
發(fā)現(xiàn)下列幾組數(shù)據能作為三角形的邊:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作為直角三角形的三邊長的有()
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com