一次函數(shù)y=
4
3
x+4分別交x軸、y軸于A、B兩點,在x軸上取一點C,使△ABC為等腰三角形,則這樣的點C最多有( 。
分析:首先根據(jù)題意,求得A與B的坐標,然后利用勾股定理求得AB的長,再分別從AB=BC,AB=AC,AC=BC去分析求解,即可求得答案.
解答:解:∵當x=0時,y=4,當y=0時,x=-3,
∴A(-3,0),B(0,4),
∴AB=
OA2+OB2
=5,
①當AB=BC時,OA=OC,
∴C1(3,0);
②當AB=AC時,C2(-8,0),C3(2,0),
③當AC=BC時,C4
7
6
,0),
∴這樣的點C最多有4個.
故選D.
點評:此題考查了等腰三角形的性質(zhì)、一次函數(shù)的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

一次函數(shù)y=
43
x+4分別交x軸、y軸于A、B兩點,在x軸上取一點,使△ABC為等腰三角形,則這樣的點C最多有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:A(a,y1).B(2a,y2)是反比例函數(shù)y=
k
x
(k>0)圖象上的兩點.
(1)比較y1與y2的大小關(guān)系;
(2)若A、B兩點在一次函數(shù)y=-
4
3
x+b
第一象限的圖象上(如圖所示),分別過A、B兩點作x軸的垂線,垂足分別為C、D,連接OA、OB,且S△OAB=8,求a的值;
(3)在(2)的條件下,如果3m=-4x+24,3n=
32
x
,求使得m>n的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•同安區(qū)質(zhì)檢)已知:如圖,A(a,m),B(2a,n)是反比例函數(shù)y=
k
x
(k>0)
圖象上的兩點,分別過A,B兩點作x軸的垂線,垂足分別為C、D,連接OA,OB.
(1)求證:S△AOC=S△OBD
(2)若A,B兩點又在一次函數(shù)y=-
4
3
x+b
的圖象上,且S△OAB=8,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州)已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A,B(點A,B在原點O兩側(cè)),與y軸相交于點C,且點A,C在一次函數(shù)y2=
43
x+n的圖象上,線段AB長為16,線段OC長為8,當y1隨著x的增大而減小時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大連)如圖,一次函數(shù)y=-
43
x+4的圖象與x軸、y軸分別相交于點A、B.P是射線BO上的一個動點(點P不與點B重合),過點P作PC⊥AB,垂足為C,在射線CA上截取CD=CP,連接PD.設(shè)BP=t.
(1)t為何值時,點D恰好與點A重合?
(2)設(shè)△PCD與△AOB重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

同步練習冊答案