在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿(mǎn)足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
(1)當(dāng)k=-2時(shí),A(1,-2),
∵A在反比例函數(shù)圖象上,
∴設(shè)反比例函數(shù)的解析式為:y=
m
x
,
代入A(1,-2)得:-2=
m
1
,
解得:m=-2,
∴反比例函數(shù)的解析式為:y=-
2
x
;

(2)∵要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,
∴k<0,
∵二次函數(shù)y=k(x2+x-1)=k(x+
1
2
2-
5
4
k,對(duì)稱(chēng)軸為:直線x=-
1
2
,
要使二次函數(shù)y=k(x2+x-1)滿(mǎn)足上述條件,在k<0的情況下,x必須在對(duì)稱(chēng)軸的左邊,
即x<-
1
2
時(shí),才能使得y隨著x的增大而增大,
∴綜上所述,k<0且x<-
1
2
;

(3)由(2)可得:Q(-
1
2
,-
5
4
k),
∵△ABQ是以AB為斜邊的直角三角形,A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),(如圖是其中的一種情況)
∴原點(diǎn)O平分AB,
∴OQ=OA=OB,
作AD⊥OC,QC⊥OC,
∴OQ=
CQ2+OC2
=
1
4
+
25
16
k2

∵OA=
AD2+OD2
=
1+k2

1
4
+
25
16
k2
=
1+k2
,
解得:k=±
2
3
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)過(guò)點(diǎn)A(1,-3),B(3,-3),C(-1,5),頂點(diǎn)為M點(diǎn).
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90°.若不存在,說(shuō)明理由;若存在,求出P點(diǎn)的坐標(biāo).
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90°,若不存在,說(shuō)明理由;若存在,求出K點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
(3)P是直線x=1右側(cè)的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A、P、M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線y=-
3
3
x+
2
3
3
交x軸于點(diǎn)C,交y軸于點(diǎn)A.等腰直角三角板OBD的頂點(diǎn)D與點(diǎn)C重合,如圖A所示.把三角板繞著點(diǎn)O順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α<180°),使B點(diǎn)恰好落在AC上的B'處,如圖B所示.
(1)求圖A中的點(diǎn)B的坐標(biāo);
(2)求α的值;
(3)若二次函數(shù)y=mx2+3x的圖象經(jīng)過(guò)(1)中的點(diǎn)B,判斷點(diǎn)B′是否在這條拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過(guò)點(diǎn)A作直線ACx軸,交拋物線于另一點(diǎn)C.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n.
(1)求拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D,求C、D點(diǎn)的坐標(biāo)和△BCD的面積;
(3)P是線段OC上一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,交拋物線于點(diǎn)H,若直線BC把△PCH分成面積相等的兩部分,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點(diǎn)A(1,0),B(3,0)與y軸相交于點(diǎn)C(0,3),
(l)求拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)D(4,m)是拋物線y=ax2+bx+c上一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知拋物線的對(duì)稱(chēng)軸為直線x=4,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A、C坐標(biāo)為(2,0)、(0,3).
(1)求此拋物線的解析式;
(2)拋物線上有一點(diǎn)P,使以PC為直徑的圓過(guò)B點(diǎn),求P的坐標(biāo);
(3)在滿(mǎn)足(2)的條件下,x軸上是否存在點(diǎn)E,使得△COE與△PBC相似?若存在,求出E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面直角坐標(biāo)系中三點(diǎn)A(2,0),B(0,2),P(x,0)(x<0),連接BP,過(guò)P點(diǎn)作PC⊥PB交過(guò)點(diǎn)A的直線a于點(diǎn)C(2,y)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x取最大整數(shù)時(shí),求BC與PA的交點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案