【題目】如圖,三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過(guò)點(diǎn)B的直線(xiàn)折疊這個(gè)三角形,使點(diǎn)C落在A(yíng)B邊上的點(diǎn)E處,折痕為BD,求△ADE的周長(zhǎng).
【答案】解:∵BC沿BD折疊點(diǎn)C落在A(yíng)B邊上的點(diǎn)E處,
∴DE=CD,BE=BC,
∵AB=8cm,BC=6cm,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,
∴△ADE的周長(zhǎng)=AD+DE+AE,
=AD+CD+AE,
=AC+AE,
=5+2,
=7cm.
【解析】根據(jù)翻折變換的性質(zhì)可得DE=CD,BE=BC,然后求出AE,再根據(jù)三角形的周長(zhǎng)列式求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中,點(diǎn)在邊上, ⊥, ⊥,垂足分別是、,∠1=∠2.
(1)與平行嗎?為什么?
(2)若∠=51°,∠=54°,求∠的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了深化課程改革,省實(shí)驗(yàn)積極開(kāi)展校本課程建設(shè),計(jì)劃成立“增量閱讀”、“趣味數(shù)學(xué)”、“音樂(lè)舞蹈”和“戲劇英語(yǔ)”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán),為此,隨機(jī)調(diào)查了初中部分學(xué)生選擇社團(tuán)的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):
選擇意向 | 增量閱讀 | 趣味數(shù)學(xué) | 音樂(lè)舞蹈 | 戲曲英語(yǔ) | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問(wèn)題:
(l)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值:
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有5000名學(xué)生,試估計(jì)全校選擇“音樂(lè)舞蹈”社團(tuán)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說(shuō)明理由.
【深入探究】
(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長(zhǎng).
(3)如圖3,在(2)的條件下,以AC為直角邊在線(xiàn)段AC的左側(cè)作等腰直角△ACD,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過(guò)點(diǎn)B作EB⊥AB,交CD于點(diǎn)E.若DE=6,則AD的長(zhǎng)為( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線(xiàn)DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿(mǎn)足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)回答并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過(guò)E點(diǎn)作EF∥AB(經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與這條直線(xiàn)平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線(xiàn)與同一直線(xiàn)平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過(guò)程填寫(xiě)完整.
解:因?yàn)镋F∥AD(已知)
所以∠2=∠3.( )
又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因?yàn)椤螧AC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的半徑是5cm,如果圓心到直線(xiàn)的距離是4cm,那么直線(xiàn)和圓的位置關(guān)系是( 。
A.相離B.相交C.相切D.內(nèi)含
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com