【題目】某公司員工分別住在A、B、C三個住宅區(qū),A區(qū)有25人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,公司的接送車打算在此間只設一個停靠點,為使所有員工步行到?奎c的路程總和最少,那么停靠點的位置應設在( 。

A. A區(qū) B. B區(qū) C. A區(qū)或B區(qū) D. C區(qū)

【答案】C

【解析】

本題考查的知識點是比較線段的長短,解答此題,可根據(jù)題意分別計算?奎c分別在各點時員工步行的路程和,然后選擇最小的即可得解.

解:∵當?奎c在A區(qū)時,所有員工步行到?奎c路程和是:15×200+10×600=9000m;

當?奎c在B區(qū)時,所有員工步行到停靠點路程和是:25×200+10×400=9000m;

當?奎c在C區(qū)時,所有員工步行到?奎c路程和是:25×600+15×400=21000m.

當?奎c在AB區(qū)時,所有員工步行到停靠點路程和最小,那么?奎c的位置應該在AB區(qū).

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道分數(shù)寫為小數(shù)即,反之,無限循環(huán)小數(shù)寫成分數(shù)即

一般地,任何一個無限循環(huán)小數(shù)都可以寫成分數(shù)形式.

例如寫成分數(shù)形式時=,則=0.5555…=0.5+0.05555…=

解一元一次方程,解得:,所以=

(1)模仿上述過程,把無限循環(huán)小數(shù)0.寫成分數(shù)形式;

(2)你能把無限循環(huán)小數(shù)化成分數(shù)形式嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦晚會上,王老師要為她的學生及班級的六位科任老師送上賀年卡,網(wǎng)上購買賀年卡的優(yōu)惠條件是:購買5050張以上享受團購價.王老師發(fā)現(xiàn):零售價與團購價的比是5:4,王老師計算了一下,按計劃購買賀年卡只能享受零售價,如果比原計劃多購買6張賀年卡就能享受團購價,這樣她正好花了100元,而且比原計劃還節(jié)約10元錢;

(1)賀年卡的零售價是多少?

(2)班里有多少學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為直角邊,A為直角頂點,在AD左側作等腰直角三角形ADF,連接CF,AB=AC,BAC=90°.

(1)當點D在線段BC上時(不與點B重合),線段CFBD的數(shù)量關系與位置關系分別是什么?請給予證明.

(2)當點D在線段BC的延長線上時,(1)的結論是否仍然成立?請在圖2中畫出相應的圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,BECD,BE=DE,BC=DA.

求證:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】桐梓縣四抓四到位確保教育均衡發(fā)展,加速城區(qū)新、擴建項目工程,加快建設某間小學,公司經(jīng)過調查了解:甲、乙兩個工程隊有能力承包建校工程,甲工程隊單獨完成建校工程的時間是乙工程隊的2倍,甲、乙兩隊合作完成建校工程需要60天.

(1)甲、乙兩隊單獨完成建校工程各需多少天?

(2)若甲、乙兩隊共同工作了10天后,乙隊因其他工作停止施工,由甲隊單獨繼續(xù)施工,要使甲隊總的工作量不少于乙隊已做工作量的2倍,那么甲隊至少再單獨施工多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3)0﹣(﹣1)2017+(﹣ 2+tan60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點P為線段AB上的動點(與A、B兩點不重合),在同一平面內,把線段AP、BP分別折成等邊△CDP和△EFP,且D、P、F三點共線,如圖所示.
(1)若DF=2,求AB的長;
(2)若AB=18時,等邊△CDP和△EFP的面積之和是否有最大值,如果有最大值,求最大值及此時P點位置,若沒有最大值,說明理由.

查看答案和解析>>

同步練習冊答案