如圖,已知∠MON=90°,A是∠MON內(nèi)部的一點,過點A作AB⊥ON,垂足為點B,AB=3厘米,OB=4厘米,動點E,F(xiàn)同時從O點出發(fā),點E以1.5厘米/秒的速度沿ON方向運動,點F以2厘米/秒的速度沿OM方向運動,EF與OA交于點C,連接AE,當點E到達點B時,點F隨之停止運動.設(shè)運動時間為t秒(t>0).

(1)當t=1秒時,△EOF與△ABO是否相似?請說明理由;

(2)在運動過程中,不論t取何值時,總有EF⊥OA.為什么?

3)連接AF,在運動過程中,是否存在某一時刻t,使得S△AEF=S四邊形ABOF?若存在,請求出此時t的值;若不存在,請說明理由.


解:(1)∵t=1,

∴OE=1.5厘米,OF=2厘米,

∵AB=3厘米,OB=4厘米,

==,==

∵∠MON=∠ABE=90°,

∴△EOF∽△ABO.

(2)在運動過程中,OE=1.5t,OF=2t.

∵AB=3,OB=4.

又∵∠EOF=∠ABO=90°,

∴Rt△EOF∽Rt△ABO.

∴∠AOB=∠EOF.

∵∠AOB+∠FOC=90°,

∴∠EOF+∠FOC=90°,

∴EF⊥OA.

(3)如圖,連接AF,

∵OE=1.5t,OF=2t,

∴BE=4﹣1.5t

∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,

S梯形ABOF=(2t+3)×4=4t+6

∵S△AEF=S四邊形ABOF

∴S△FOE+S△ABE=S梯形ABOF

t2+6﹣t=(4t+6),即6t2﹣17t+12=0,

解得t=或t=

∴當t=或t=時,S△AEF=S四邊形ABOF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


如圖,△ABC中,∠C=45°,點DAB上,點EBC上,若AD=DB=DEAE=1,則AC的長為

(A).        (B)2.         (C).       (D).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別是A,2),B,4),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C;

(2)平移△ABC,若A的對應點A2的坐標為(),畫出平移后的△A2B2C2;

(3)若將△A2B2C2繞某一點旋轉(zhuǎn)可以得到△A1B1C,請直接寫出旋轉(zhuǎn)中心的坐標.

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在矩形ABCD中,點E為AB的中點,EF⊥EC交AD于點F,連接CF(AD>AE),下列結(jié)論:

①∠AEF=∠BCE;

②AF+BC>CF;

③S△CEF=S△EAF+S△CBE;

④若=,則△CEF≌△CDF.

其中正確的結(jié)論是  .(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 將一包卷筒衛(wèi)生紙按如圖所示的方式擺放在水平桌面上,則它的俯視圖是(    )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 分式方程:的解是___________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列運算正確的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,過點C作⊙O的切線交AB的延長線于點P,PC=,則圖中陰影部分的面積為            (結(jié)果保留π).

 


查看答案和解析>>

同步練習冊答案