如圖,Rt△ABC內(nèi)接于⊙O,AC=BC,∠BAC的平分線AD與⊙O交于點(diǎn)D,與BC交于點(diǎn)E,延長(zhǎng)BD,與AC的延長(zhǎng)線交于點(diǎn)F,連接CD,G是CD的中點(diǎn),連接OG.
(1)判斷OG與CD的位置關(guān)系,寫(xiě)出你的結(jié)論并證明;
(2)求證:AE=BF;
(3)若OG?DE=3(2-),求⊙O的面積.
【答案】分析:(1)根據(jù)G是CD的中點(diǎn),利用垂徑定理證明即可;
(2)先證明△ACE與△BCF全等,再利用全等三角形的性質(zhì)即可證明;
(3)構(gòu)造等弦的弦心距,運(yùn)用相似三角形以及勾股定理進(jìn)行求解.
解答:(1)解:猜想OG⊥CD.
證明:如圖,連接OC、OD,
∵OC=OD,G是CD的中點(diǎn),
∴由等腰三角形的性質(zhì),有OG⊥CD.

(2)證明:∵AB是⊙O的直徑,∴∠ACB=90°,
而∠CAE=∠CBF(同弧所對(duì)的圓周角相等),
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,
∴Rt△ACE≌Rt△BCF(ASA).
∴AE=BF.

(3)解:如圖,過(guò)點(diǎn)O作BD的垂線,垂足為H,則H為BD的中點(diǎn).
∴OH=AD,即AD=2OH,
又∠CAD=∠BAD?CD=BD,∴OH=OG.
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽R(shí)t△ADB,
,即BD2=AD•DE.

又BD=FD,∴BF=2BD,
①,
設(shè)AC=x,則BC=x,AB=,
∵AD是∠BAC的平分線,
∴∠FAD=∠BAD.
在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD(ASA).
∴AF=AB=,BD=FD.
∴CF=AF-AC=
在Rt△BCF中,由勾股定理,得
②,
由①、②,得,
∴x2=12,解得(舍去),
,
∴⊙O的半徑長(zhǎng)為
∴S⊙O=π•(2=6π.
點(diǎn)評(píng):熟練運(yùn)用垂徑定理、勾股定理、相似三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC內(nèi)有三個(gè)內(nèi)接正方形,DF=18,GK=12,則PQ=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、如圖,Rt△ABC內(nèi)接于⊙O,∠A=30°,延長(zhǎng)斜邊AB到D,使BD等于⊙O半徑,求證:DC是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC內(nèi)接于⊙O,∠ACB的平分線分別交AB、⊙O于點(diǎn)D、E.
求證:CD•CE=AC•BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC內(nèi)接于⊙O.將⊙O沿直徑AC對(duì)折,B點(diǎn)落在圓上D點(diǎn)處.連接BD交AC于點(diǎn)E,過(guò)C點(diǎn)作BD的平行線交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=
35
,DF=3,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通)如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是
AB
的中點(diǎn),CD與AB的交點(diǎn)為E,則
CE
DE
等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案