如圖,△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分線,DE⊥AB于E.已知AB=6cm,求△DEB的周長.

解:∵AD是∠CAB的平分線,DE⊥AB,∠C=90°,
∴CD=ED,
∵在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
又∵AC=BC,
∴△DEB的周長=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,
∵AB=6cm,
∴△DEB的周長=6cm.
分析:根據(jù)角平分線上的點到角的兩邊的距離相等可得CD=ED,再利用“HL”證明Rt△ACD和Rt△AED全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=AC,然后求出△DEB的周長=AB,代入數(shù)據(jù)即可得解.
點評:本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),全等三角形的判定與性質(zhì),是基礎(chǔ)題,求出△DEB的周長=AB是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案