【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為( 。
A. y=﹣ B. y= C. y=﹣ D. y=
【答案】C
【解析】
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,利用三角關(guān)系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式.
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,
∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵OB=2OA,
∴△AOC與△OBD相似比為1:2,
∴S△AOC:S△OBD=1:4,
∵點A在反比例y=上,
∴△AOC面積為,
∴△OBD面積為2,即k=4,
則點B所在的反比例解析式為y=﹣,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,動點P在邊AD上以每秒2個單位的速度從A出發(fā),沿AD向D運動,同時動點Q在邊BD上以每秒5個單位的速度從D出發(fā),沿DB向B運動,當其中有一個點到達終點時,另一個點也隨之停止運動.設(shè)運動時間為t秒.
(1)填空:當某一時刻t,使得t=1時,P、Q兩點間的距離PQ= ;
(2)是否存在以P、D、Q中一點為圓心的圓恰好過另外兩個點?若存在求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖⊙O的內(nèi)接△ABC中,外角∠ACF的角平分線與⊙O相交于D點,DP⊥AC,垂足為P,DH⊥BF,垂足為H.問:
(1)∠PDC與∠HDC是否相等,為什么?
(2)圖中有哪幾組相等的線段?
(3)當△ABC滿足什么條件時,△CPD∽△CBA,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交函數(shù) y=x(x≥0)與 y= x(x≥0)的圖象于 B,C兩點,過點C作y軸的平行線交y=x(x≥0)的圖象于點D,直線DE∥AC交 y=x(x≥0)的圖象于點E,則=( )
A. B. 1 C. D. 3﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖
(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊AB上,點E在線段CD上,且∠ACD=∠B=∠BAE.
(1)求證:;
(2)當點E為CD中點時,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個二次函數(shù)圖象上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣ | 0 | 2 | 0 | m | ﹣6 | ﹣ | … |
(1)求這個二次函數(shù)的表達式;
(2)求m的值;
(3)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(4)根據(jù)圖象,寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標;
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
求一次函數(shù)的表達式;
若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com