(本小題滿分9分)已知⊙與⊙相交于、兩點(diǎn),點(diǎn)在⊙上,為⊙上一點(diǎn)(不與,,重合),直線與⊙交于另一點(diǎn)。
(1)如圖(8),若是⊙的直徑,求證:;
(2)如圖(9),若是⊙外一點(diǎn),求證:;
(3)如圖(10),若是⊙內(nèi)一點(diǎn),判斷(2)中的結(jié)論是否成立。
證明:(1)如圖(一),連接,
∵為⊙的直徑 ∴
∴為⊙的直徑 ∴在上
又,為的中點(diǎn)
∴△是以為底邊的等腰三角形
∴····················································································· (3分)
(2)如圖(二),連接,并延長(zhǎng)交⊙與點(diǎn),連
∵四邊形內(nèi)接于⊙ ∴
又∵ ∴
∴
又為⊙的直徑 ∴
∴···················································································· (3分)
(3)如圖(三),連接,并延長(zhǎng)交⊙與點(diǎn),連
∵ 又
∴
∴ 又
∴···················································································· (3分)
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省周口市初三下學(xué)期第二十七章相似三角形檢測(cè)題 題型:解答題
(本小題滿分7分)
已知:關(guān)于的一元二次方程.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍;
(2)在(1)的條件下,求證:無(wú)論取何值,拋物線y=總過(guò)軸上的一個(gè)固定點(diǎn);
(3)若為正整數(shù),且關(guān)于的一元二次方程有兩個(gè)不相等的整數(shù)根,把拋物線y=向右平移4個(gè)單位長(zhǎng)度,求平移后的拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com