已知二次函數(shù)y= x2 +4x+3.

(1)用配方法將y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
(3)寫出當(dāng)x為何值時(shí),y>0.
(1)
(2)

(3)時(shí),

試題分析:(1)
(2)列表:
x

-4
-3
-2
-1
0

y

3
0
-1
0
3

由此可以確定函數(shù)圖象
(3)根據(jù)函數(shù)圖形,可知,當(dāng)時(shí),
點(diǎn)評(píng):本題難度不大,通過(guò)描點(diǎn)法,可以畫出函數(shù)的圖象
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分,其中第(1)小題5分,第(2)小題4分,第(3)小題3分)
已知拋物線過(guò)點(diǎn)A(-1,0),B(4,0),P(5,3),拋物線與y軸交于點(diǎn)C

(1)求二次函數(shù)的解析式;
(2)求tanAPC的值;
(3)在拋物線上求一點(diǎn)Q,過(guò)Q點(diǎn)作x軸的垂線,垂足為H,使得∠BQH=∠APC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線與x軸交于點(diǎn)A、點(diǎn)B,與y軸的正半軸交于點(diǎn)C,點(diǎn) A的坐標(biāo)為(1,0),OB=OC,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)若此拋物線的對(duì)稱軸上的點(diǎn)P滿足∠APB=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,對(duì)于實(shí)數(shù)c、d,我們可用min{ c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,}=.若關(guān)于x的函數(shù)y = min{,}的圖象關(guān)于直線對(duì)稱,試討論其與動(dòng)直線交點(diǎn)的個(gè)數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的方程ax2+bx+c+2=0的根的情況是(   )
A.無(wú)實(shí)數(shù)根B.有兩個(gè)相等實(shí)數(shù)根
C.有兩個(gè)異號(hào)實(shí)數(shù)根D.有兩個(gè)同號(hào)不等實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中是二次函數(shù)的是(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)用因式分解法解方程 x(x+1) =2(x+1) .
(2)已知二次函數(shù)的解析式為y=x2-4x-5,請(qǐng)你判斷此二次函數(shù)的圖象與x軸交點(diǎn)的個(gè)數(shù);并指出當(dāng)y隨x的增大而增大時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間的函數(shù)關(guān)系可用圖象表示為(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖象可能是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)二次函數(shù)y=-x2+2x+3的圖像,判斷下列說(shuō)法中,錯(cuò)誤的是(     )
A.二次函數(shù)圖像的對(duì)稱軸是直線x=1;
B.當(dāng)x>0時(shí),y<4;
C.當(dāng)x≤1時(shí),函數(shù)值y是隨著x的增大而增大;
D.當(dāng)y≥0時(shí),x的取值范圍是-1≤x≤3時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案