【題目】下列計算正確的是( 。
A. 3a﹣a=3B. (a2)3=a6C. 3a+2a=2a2D. a2﹣a2=a4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB∥CD,AB,CD被直線l所截,點P是l上的一動點,連接PA,PC.
(1)如圖①,當(dāng)P在AB,CD之間時,求證:∠APC=∠A+∠C;
(2)如圖②,當(dāng)P在射線ME上時,探究∠A,∠C,∠APC的關(guān)系并證明;
(3)如圖③,當(dāng)P在射線NF上時,直接寫出∠A,∠C,∠APC三者之間關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程3x2﹣1=4x化成一般形式為( )
A.3x2+4x=1
B.3x2﹣4x=1
C.3x2﹣4x﹣1=0
D.3x2+4x﹣1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在括號前面添上“+”或“-”或在括號內(nèi)填空.
(1)-a+b=________(a-b);
(2)-m2-2m+5=-(______________);
(3)(x-y)3=________(y-x)3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠BCD的三等分線是CP,CQ,又CR⊥CP,若∠B=78°,則∠RCE=( )
A.66°
B.65°
C.58°
D.56°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:CN∥AB.
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論CN∥AB還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進行分組統(tǒng)計,結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統(tǒng)計圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形的圓心角的度數(shù).
(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機選取2名選手進行調(diào)研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com