作業(yè)寶如圖,在平面直角坐標(biāo)系中,過(guò)格點(diǎn)A,B,C作一圓弧.
(1)畫出圓弧所在圓的圓心P;
(2)過(guò)點(diǎn)B畫一條直線,使它與該圓弧相切;
(3)連結(jié)AC,求線段AC和弧AC圍成的圖形的面積.

解:(1)連接BC,作BC的垂直平分線,再利用網(wǎng)格得出AB的垂直平分線,即可得出交點(diǎn)P的位置;

(2)如圖所示:EF即為所求;

(3)連接AP,PC,AC,
∵AP=,PC=,AC=
∴AP2+PC2=AC2,
∴△APC是直角三角形,
∴∠APC=90°,
∴S扇形APC==
S△APC=××=,
∴線段AC和弧AC圍成的圖形的面積為:-
分析:(1)連接BC,作BC的垂直平分線,交坐標(biāo)軸與P,P即為圓心;
(2)先連接BP,再過(guò)B點(diǎn)作BP的垂線即為所求過(guò)點(diǎn)B且與該弧相切的直線;
(3)首先得出∠APC=90°,進(jìn)而利用扇形面積以及三角形面積公式求出即可.
點(diǎn)評(píng):本題主要考查作圖-復(fù)雜作圖以及等腰直角三角形的判定和扇形面積與三角形面積求法等知識(shí),關(guān)鍵是根據(jù)題意確定出圓心P的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案