精英家教網 > 初中數學 > 題目詳情
如圖,⊙O的直徑AB=12cm,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,BN于C,設AD=x,BC=y,求y與x的函數關系式.

【答案】分析:根據切線長定理得到BF=AD=x,CE=CB=y,則DC=DE+CE=x+y,在直角△DFC中根據勾股定理,就可以求出y與x的關系.
解答:解:作DF⊥BN交BC于F;
∵AM、BN與⊙O切于點定A、B,
∴AB⊥AM,AB⊥BN.
又∵DF⊥BN,
∴∠A=∠B=∠BFD=90°,
∴四邊形ABFD是矩形,
∴BF=AD=xDF=AB=12,
∵BC=y,
∴FC=BC-BF=y-x;
∵DE切⊙O于E,
∴DE=DA=x CE=CB=y,
則DC=DE+CE=x+y,
在Rt△DFC中,
由勾股定理得:(x+y)2=(x-y)2+122,
整理為
∴y與x的函數關系式是
點評:本題主要考查了切線長定理.梯形的面積可以通過作高線轉化為直角三角形的問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案