【題目】如圖,直線軸交于點,與軸交于點,把沿軸對折,點落到點處,過點、的拋物線與直線交于點、

1)求直線和拋物線的解析式;

2)在直線上方的拋物線上求一點,使面積最大,求出點坐標;

3)在第一象限內(nèi)的拋物線上,是否存在一點,作垂直于軸,垂足為點,使得以、、為項點的三角形與相似?若存在,求出點的坐標:若不存在,請說明理由.

【答案】1;(2;(3)存在,

【解析】

(1)由直線可以求出A,B的坐標,由待定系數(shù)法就可以求出拋物線的解析式和直線BD的解析式;

(2)先求得點D的坐標,作EFy軸交直線BDF,設(shè),利用三角形面積公式求得,再利用二次函數(shù)性質(zhì)即可求得答案;

(3)如圖1,2,分類討論,當△BOC∽△MON或△BOC∽△ONM時,由相似三角形的性質(zhì)就可以求出結(jié)論;

(1)∵直線AB,

y=0,則,令,則y=2,

∴點AB的坐標分別是:A (-1,0)B(0,2),

根據(jù)對折的性質(zhì):點C的坐標是:(1,0) ,

設(shè)直線BD解析式為,

B(0,2),C(10)代入,得,

解得:,,

∴直線BD解析式為,

A(-1,0)B(0,2)代入

解得:,,

∴拋物線的解析式為;

(2)解方程組得:,

∴點D坐標為(3,-4) ,

EFy軸交直線BDF

設(shè)

(03)

∴當時,三角形面積最大,

此時,點的坐標為:;

(3)存在.

∵點B、C的坐標分別是B (0,2)C (1,0)

,,

①如圖1所示,

當△MON∽△BCO時,

,即,

,

設(shè),則,

代入拋物線的解析式得:

解得:(不合題意,舍去),,

∴點M的坐標為(1,2);

②如圖2所示,

當△MON∽△CBO時,

,即,

MN=ON,

設(shè),則M(b,b),

M(b,b)代入拋物線的解析式得:

解得:(不合題意,舍去),

∴點M的坐標為(,),

∴存在這樣的點

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

問題情境:已知是正方形的對角線,將直角三角尺放在正方形.

1)如圖1,使三角尺的直角頂點與點重合,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.求證:.

操作發(fā)現(xiàn):

2)如圖2,將三角尺的直角項點放在上,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.判斷的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,EAD的中點,過點ABC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:DBC的中點;

2)若BAAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D. EBC上,EFAB,垂足為F,∠1=2.

(1)試說明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為不稱職,當 時為基本稱職,當 時為稱職,當 時為優(yōu)秀”.根據(jù)以上信息,解答下列問題:

(1)補全折線統(tǒng)計圖和扇形統(tǒng)計圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;

(2)求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個轉(zhuǎn)盤被分成等分,每一份上各寫有一個數(shù)字,隨機轉(zhuǎn)動轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字數(shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個位數(shù)字,次轉(zhuǎn)動后組成一個兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)

用畫樹狀圖的方法求出轉(zhuǎn)動后所有可能出現(xiàn)的兩位數(shù)的個數(shù).

甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時甲勝,否則乙勝,這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BDAM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B60°

1)求證:AM是⊙O的切線;

2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件,出廠價為每件,每月銷售量(件)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為,那么政府這個月為他承擔的總差價為多少元?

2)設(shè)李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

同步練習冊答案