【題目】如圖,已知⊙O的半徑為4,四邊形ABCD為⊙O的內(nèi)接四邊形,且AB4,AD4,則∠BCD的度數(shù)為(  )

A.105°B.115°C.120°D.135°

【答案】A

【解析】

OEABE,OFADF,連接OA,如圖,利用垂徑定理和解直角三角形的知識(shí)分別在Rt△AOERt△AOF中分別求出OAEOAF的度數(shù),進(jìn)而可得EAF的度數(shù),然后利用圓內(nèi)接四邊形的性質(zhì)即可求得結(jié)果.

解:作OEABEOFADF,連接OA,如圖,則AEAB2,AFAD2

RtAOE中,∵cosOAE,∴∠OAE30°,

RtAOF中,∵cosOAF,∴∠OAF45°

∴∠EAF30°+45°75°,

∵四邊形ABCD為⊙O的內(nèi)接四邊形,

∴∠C180°﹣∠BAC180°75°105°

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點(diǎn) A 在點(diǎn) B 左側(cè)).

(1)當(dāng)拋物線過原點(diǎn)時(shí),求實(shí)數(shù) a 的值;

(2)①求拋物線的對(duì)稱軸;

②求拋物線的頂點(diǎn)的縱坐標(biāo)(用含 a 的代數(shù)式表示);

(3)當(dāng) AB≤4 時(shí),求實(shí)數(shù) a 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,延長軸于點(diǎn),作正方形,延長軸于點(diǎn),作正方形,…按這樣的規(guī)律進(jìn)行下去,第個(gè)正方形的面積為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點(diǎn)A作ADBC,與ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與O交于點(diǎn)F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境,某小區(qū)將生活垃圾分成三類:廚余垃圾、可回收垃圾和其他垃圾,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,BC

1)小明將垃圾分裝在三個(gè)袋中,任意投放,用畫樹狀圖或列表的方法求把三個(gè)袋子都放錯(cuò)位置的概率是多少?

2)某學(xué)習(xí)小組為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機(jī)抽取了某天三類垃圾箱中總共100噸的生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如表(單位:噸):

A

B

C

a

40

10

10

b

3

24

3

c

2

2

6

調(diào)查發(fā)現(xiàn),在“可回收垃圾”中塑料類垃圾占10%,每回收1噸塑料類垃圾可獲得0.7噸二級(jí)原料,某城市每天大約產(chǎn)生200噸生活垃圾假設(shè)該城市每天處理投放正確的垃圾,每天大概可回收多少噸塑料類垃圾的二級(jí)原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是我市某大樓的高,在地面上點(diǎn)處測得樓頂的仰角為,沿方向前進(jìn)米到達(dá)點(diǎn),測得.現(xiàn)打算從大樓頂端點(diǎn)懸掛一幅慶祝建國周年的大型標(biāo)語,若標(biāo)語底端距地面,請你計(jì)算標(biāo)語的長度應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)ECD邊上一點(diǎn),,連接AE、BE、BD,且AE、BD交于點(diǎn)F.若,則( 。

A.15.5B.16.5C.17.5D.18.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,4),B(﹣4,0),C(﹣1,0).

1A1B1C1ABC關(guān)于原點(diǎn)O對(duì)稱,畫出A1B1C1并寫出點(diǎn)A1的坐標(biāo);

2A2B2C2ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,畫出A2B2C2并寫出點(diǎn)A2的坐標(biāo);

3)連接OAOA2,在ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的A2B2C2的過程中,計(jì)算線段OA變換到OA2過程中掃過區(qū)域的面積是多少?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y1x2+bx+c與一次函數(shù)y2x+a交于點(diǎn)A(﹣10),Bd,5).

1)求二次函數(shù)y1的解析式;

2)當(dāng)y1y2時(shí),則x的取值范圍是   ;

3)已知點(diǎn)P是在x軸下方的二次函數(shù)y1圖象的點(diǎn),求OAP的面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案