如圖已知二次函數(shù)圖象的頂點為原點,直線的圖象與該二次函數(shù)的圖象交于A點(8,8),直線與x軸的交點為C,與y軸的交點為B.

(1)求這個二次函數(shù)的解析式與B點坐標(biāo);
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于D點,與x軸交于點E.設(shè)線段PD的長為h,點P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點P,使得以點P、D、B為頂點的三角形與△BOC相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
(1),(0,4);(2)(0<t<8);
(3)(,)或(2,5).

試題分析:(1)先設(shè)二次函數(shù)的解析式為,把A點(8,8)代入即可求出這個二次函數(shù)的解析式,根據(jù)直線y軸的交點橫坐標(biāo)為0即可求出B點坐標(biāo);
(2)設(shè)P點在上且橫坐標(biāo)為t,得出P點的坐標(biāo)為(t,),根據(jù)PD⊥x軸于E,用t表示出D和E的坐標(biāo),再根據(jù)PD=h,求出,最后根據(jù)P與AB不重合且在AB上,得出t的取值范圍;
(3)先過點B作BF⊥PD于F,得出,BF=t,再根據(jù)勾股定理得出PB和BC的值,再假設(shè)△PBO∽△BOC,得出,即可求出t1和t2的值,從而求出P點的坐標(biāo).
(1)設(shè)二次函數(shù)的解析式為
∵A點(8,8)在二次函數(shù)上,
,解得

∵直線與y軸的交點為B,
∴B點坐標(biāo)為(0,4).
(2)P點在上且橫坐標(biāo)為t,
∴P(t,),
∵PD⊥x軸于E,
∴D(t,),E(t,0),
∵PD=h,

∵P與AB不重合且在AB上,
∴0<t<8.
(3)存在,
當(dāng)BD⊥PE時,△PBD∽△BCO,




解得,(舍去)
∴P點的縱坐標(biāo)是
此時P點的坐標(biāo)是(,
當(dāng)DB⊥PC時,
△PBD∽△BCO,
過點B作BF⊥PD,

則F(t,4),
,BF=t,
根據(jù)勾股定理得

假設(shè)△PBO∽△BOC,
則有

解得,(舍去)

此時P點的坐標(biāo)是(2,5).
點評:在解題時要能靈運用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(7分)如圖,已知拋物線經(jīng)過A(2,0)、B(0,-6)兩點,其對稱軸與軸交于點C.

(1)求該拋物線和直線BC的解析式;
(2)設(shè)拋物線與直線BC相交于點D,連結(jié)AB、AD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖1,拋物線過點且對稱軸為直線點B為直線OA下方的拋物線上一動點,點B的橫坐標(biāo)為m.

(1)求該拋物線的解析式:
(2)若的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)如圖2,過點B作直線軸,交線段OA于點C,在拋物線的對稱軸上是否存在點D,使是以D為直角頂點的等腰直角三角形?若存在,求出所有符合條件的點B的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=ax2+b x+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論中正確的是(  )
A. a>0B.b<0C.c<0D.a(chǎn)+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“十八大”報告一大亮點就是關(guān)注民生問題,交通問題已經(jīng)成了全社會關(guān)注的熱點.為了解新建道路的通行能力,某研究表明,某種情況下,車流速度 (單位:千米/時)是車流密度(單位:輛/千米)的函數(shù),函數(shù)圖象如圖所示.

(1)求關(guān)于的函數(shù)表達式;
(2)車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度.若車流速度低于80千米/時,求當(dāng)車流密度為多少時,車流量(單位:輛/時)達到最大,并求出這一最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

研究表明一種培育后能繁殖的細胞在一定的環(huán)境下有以下規(guī)律:若有n 個細胞,經(jīng)過第一周期后,在第1 個周期內(nèi)要死去1個,會新繁殖(n-1)個;經(jīng)過第二周期后,在第2 個周期內(nèi)要死去2個,又會新繁殖(n-2)個;以此類推.例如, 細胞經(jīng)過第x 個周期后時,在第x 個周期內(nèi)要死去x個,又會新繁殖 (n-x)個。
周期序號
在第x周期后細胞總數(shù)
1
n-1+(n-1)=2(n-1)
2
2(n-1)-2+(n-2)=3(n-2)
3
3(n-2)-3+(n-3)=4(n-3)
4
 
5
 
……
……
 
(1)根據(jù)題意,分別填寫上表第4、5兩個周期后的細胞總數(shù);
(2)根據(jù)上表,直接寫出在第x周期后時,該細胞的總個數(shù)y(用x、n表示);
(3)當(dāng)n=21時,細胞在第幾周期后時細胞的總個數(shù)最多?最多是多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結(jié)FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)當(dāng)t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,將拋物線先向右平移2個單位,再向上平移2個單位,得到的拋物線解析式為   (        )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2-6x+5的圖像的頂點坐標(biāo)是(     )
A.(-3,4)B.(3,4) C.(-1,2)D.(3,-4)

查看答案和解析>>

同步練習(xí)冊答案