某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

銷售單價(元)
 
x
 
銷售量y(件)
 
 
 
銷售玩具獲得利潤w(元)
 
 
 
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

(1)1000-10x,-10x2+1300x-30000;(2)50元或80元;(3)8640元.

解析試題分析:(1)由銷售單價每漲1元,就會少售出10件玩具得y=600-(x-40)×10=1000-10x,利潤=(1000-10x)(x-30)=-10x2+1300x-30000;
(2)令-10x2+1300x-30000=10000,求出x的值即可;
(3)首先求出x的取值范圍,然后把w=-10x2+1300x-30000轉(zhuǎn)化成y=-10(x-65)2+12250,結(jié)合x的取值范圍,求出最大利潤.
試題解析:(1)

銷售單價(元)
x
銷售量y(件)
1000-10x
銷售玩具獲得利潤w(元)
-10x2+1300x-30000
(2)-10x2+1300x-30000=10000
解之得:x1=50,x2=80
答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤,
(3)根據(jù)題意得

解之得:44≤x≤46,
w=-10x2+1300x-30000=-10(x-65)2+12250,
∵a=-10<0,對稱軸是直線x=65,
∴當(dāng)44≤x≤46時,w隨x增大而增大.
∴當(dāng)x=46時,W最大值=8640(元).
答:商場銷售該品牌玩具獲得的最大利潤為8640元.
考點(diǎn): 1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點(diǎn)A坐標(biāo)為(0,6),點(diǎn)C坐標(biāo)為(3,0),BC=,一拋物線過點(diǎn)A、B、 C.
(1)填空:點(diǎn)B的坐標(biāo)為   ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點(diǎn)E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點(diǎn)P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運(yùn)動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運(yùn)動.設(shè)運(yùn)動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,-),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場購進(jìn)一批單價為50元的商品,規(guī)定銷售時單價不低于進(jìn)價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).

(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過A(-1,0),B(3,0),C(0,-3)三點(diǎn),求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與x軸交于A、B兩點(diǎn),點(diǎn)C是拋物線在第一象限內(nèi)部分的一個動點(diǎn),點(diǎn)D是OC的中點(diǎn),連接BD并延長,交AC于點(diǎn)E.

(1)說明:
(2)當(dāng)點(diǎn)C、點(diǎn)A到y(tǒng)軸距離相等時,求點(diǎn)E坐標(biāo).
(3)當(dāng)的面積為時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線經(jīng)過點(diǎn)B。

(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案