某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

(1)當(dāng)銷售單價(jià)定為35元時(shí),每月可獲得最大利潤(rùn);
(2)李明想要每月獲得2000元的利潤(rùn),銷售單價(jià)應(yīng)定為30元或40元;
(3)想要每月獲得的利潤(rùn)不低于2000元,每月的成本最少為3600元.

解析試題分析:(1)由題意得,每月銷售量與銷售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤(rùn)=(定價(jià)﹣進(jìn)價(jià))×銷售量,從而列出關(guān)系式;
(2)令w=2000,然后解一元二次方程,從而求出銷售單價(jià);
(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
試題解析:(1)由題意,得:w=(x﹣20)•y,
=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,
x==35,
答:當(dāng)銷售單價(jià)定為35元時(shí),每月可獲得最大利潤(rùn);
(2)由題意,得:﹣10x2+700x﹣10000=2000,
解這個(gè)方程得:x1=30,x2=40,
答:李明想要每月獲得2000元的利潤(rùn),銷售單價(jià)應(yīng)定為30元或40元;
(3)∵a=﹣10<0,
∴拋物線開口向下,
∴當(dāng)30≤x≤40時(shí),w≥2000,
∵x≤32,
∴當(dāng)30≤x≤32時(shí),w≥2000,
設(shè)成本為P(元),由題意,得:P=20(﹣10x+500)=﹣200x+10000,
∵a=﹣200<0,
∴P隨x的增大而減小,
∴當(dāng)x=32時(shí),P最小=3600,
答:想要每月獲得的利潤(rùn)不低于2000元,每月的成本最少為3600元.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)
 
x
 
銷售量y(件)
 
 
 
銷售玩具獲得利潤(rùn)w(元)
 
 
 
(2)在(1)問條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=的圖像經(jīng)過B、C兩點(diǎn).

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖像探索:當(dāng)y>0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì))這些薄板的形狀均為正方形,邊長(zhǎng)(單位:cm)在5~50之間,每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長(zhǎng)成正比例,在營(yíng)銷過程中得到了表格中的數(shù)據(jù),

薄板的邊長(zhǎng)(cm)
 
20
 
30
 
出廠價(jià)(元/張)
 
50
 
70
 
⑴求一張薄板的出廠價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
⑵已知出廠一張邊長(zhǎng)為40cm的薄板,獲得利潤(rùn)是26元(利潤(rùn)=出廠價(jià)-成本價(jià)).
①求一張薄板的利潤(rùn)與邊長(zhǎng)這之間滿足的函數(shù)關(guān)系式.
②當(dāng)邊長(zhǎng)為多少時(shí),出廠一張薄板獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象過點(diǎn)(-1,0)和點(diǎn)(2,-9).
(1)求該二次函數(shù)的解析式并寫出其對(duì)稱軸;
(2)已知點(diǎn)P(2,-2),連結(jié)OP,在x軸上找一點(diǎn)M,使△OPM是等腰三角形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo)(不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖在平面直角坐標(biāo)系內(nèi),以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A、B兩點(diǎn),開口向下的拋物線經(jīng)過A、B兩點(diǎn),且其頂點(diǎn)P在⊙C上。

(1)寫出A、B兩點(diǎn)的坐標(biāo);
(2)確定此拋物線的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為4,E是邊BC上的動(dòng)點(diǎn),EH⊥AC于H,過E作EF∥AC,交線段AB于點(diǎn)F,在線段AC上取點(diǎn)P,使PE=EB.設(shè)EC=x(0<x≤2).

(1)請(qǐng)直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動(dòng)點(diǎn),當(dāng)四邊形EFPQ是平行四邊形時(shí),求平行四邊形EFPQ的面積(用含的代數(shù)式表示);
(3)當(dāng)(2)中 的平行四邊形EFPQ面積最大值時(shí),以E為圓心,r為半徑作圓,根據(jù)⊙E與此時(shí)平行四邊形EFPQ四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案