如圖已知△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于

A.315°B.270° C.180°D.135°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動(dòng).
運(yùn)動(dòng)一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);
運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時(shí)點(diǎn)Q在DF上勻速運(yùn)動(dòng),速度為
2
cm/s
,當(dāng)QC⊥DF時(shí)暫停旋轉(zhuǎn);
運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.
設(shè)運(yùn)動(dòng)時(shí)間為t(s),中間的暫停不計(jì)時(shí),
解答下列問題
(1)在RT△ABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過程共耗時(shí)
 
s;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sad A=
1
2
.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sad A=數(shù)學(xué)公式.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是______;
(3)如圖,已知數(shù)學(xué)公式,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年重慶市中考數(shù)學(xué)模擬試卷(十)(解析版) 題型:解答題

已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動(dòng).
運(yùn)動(dòng)一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);
運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時(shí)點(diǎn)Q在DF上勻速運(yùn)動(dòng),速度為,當(dāng)QC⊥DF時(shí)暫停旋轉(zhuǎn);
運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.
設(shè)運(yùn)動(dòng)時(shí)間為t(s),中間的暫停不計(jì)時(shí),
解答下列問題
(1)在RT△ABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過程共耗時(shí)______s;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市南開中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動(dòng).
運(yùn)動(dòng)一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);
運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時(shí)點(diǎn)Q在DF上勻速運(yùn)動(dòng),速度為,當(dāng)QC⊥DF時(shí)暫停旋轉(zhuǎn);
運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.
設(shè)運(yùn)動(dòng)時(shí)間為t(s),中間的暫停不計(jì)時(shí),
解答下列問題
(1)在RT△ABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過程共耗時(shí)______s;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案