方程組
x2-y=2
2x-y=k
有實數(shù)解,則k的取值范圍是( 。
A.k≥3B.k=3C.k<3D.k≤3.
x2-y=2①
2x-y=k②

由②得,y=2x-k③,
把③代入①,得
x2-(2x-k)=2,
∴△=4-4(k-2)≥0,
解得k≤3,
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

解下列方程組或不等式
(1)
4x+y=5
2x-3y=13
;
(2)
2x+y=-6
2y+z=-9
2z+x=-3

(3)
4x+3
5
7-x
2
+1
;
(4)
x-2
2
-(x-1)<1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程或方程組.
(1)
x-7
4
-
5x+8
3
=
5
4

(2)
4
3
[
3
2
(
x
2
-1)-3]-2x=3

(3)
3x+2y=5x+2
2(3x+2y)=11x+7

(4)
x+y
2
+
x-y
3
=6
4(x+y)-5(x-y)=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)如果實數(shù)x,y滿足方程組
x+y=4
2x-2y=1
,那么x2-y2=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)模擬)探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”
(1)完成下列空格:
當已知矩形A的邊長分別為6和1時,小明是這樣研究的:設所求矩形的一邊是x,則另一邊為(
7
2
-x),由題意得方程:x(
7
2
-x)=3,化簡得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴滿足要求的矩形B存在.
小紅的做法是:設所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
消去y化簡后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長分別為2和1,請你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
y=
7
2
-x
y=
3
x
,此時兩個方程都可以看成是函數(shù)解析式,從而我們可以利用函數(shù)圖象解決一些問題.如圖,在同一平面直角坐標系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結合剛才的研究,回答下列問題:(完成下列空格)
①這個圖象所研究的矩形A的面積為
8
8
;周長為
18
18

②滿足條件的矩形B的兩邊長為
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•雨花臺區(qū)一模)如果實數(shù)x、y滿足方程組
2x-2y=1
x+y=4
,那么x2-y2=
2
2

查看答案和解析>>

同步練習冊答案