若拋物線y=x2+2x-a與x軸沒有交點,則a的取值范圍是________.
a<-1
分析:若二次函數(shù)y=x2+2x-a的圖象與x軸沒有交點,則一元二次方程0=x2+2x-a的判別式小于0,從而求得a的取值范圍.
解答:∵二次函數(shù)y=x2+2x-a的圖象與x軸沒有交點,
∴令y=0時,x2+2x-a=0的判別式△<0,
即b2-4ac=4+4a<0,
解得a<-1,
故答案為:a<-1.
點評:本題考查了拋物線與x軸的交點問題,注:當(dāng)拋物線y=ax2+bx+c與軸有兩個交點時,一元二次方程ax2+bx+c=0有兩個不等的實數(shù)根即△>0;當(dāng)拋物線y=ax2+bx+c與軸有一個交點時,一元二次方程ax2+bx+c=0有兩個相等的實數(shù)根即△=0;當(dāng)拋物線y=ax2+bx+c與軸無交點時,一元二次方程ax2+bx+c=0無實數(shù)根即△<0.