如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動、設(shè)運動時間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個定值,并求出這個定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時,拋物線y=x2+bx+c經(jīng)過B、P兩點,過線段BP上一動點M作y軸的平行線交拋物線于N,當(dāng)線段MN的長取最大值時,求直線MN把四邊形OPBQ分成兩部分的面積之比.

【答案】分析:(1)根據(jù)P、Q的運動速度,可用t表示出CQ、OP的長,進而根據(jù)OC的長求出OQ的表達式,即可由三角形的面積公式得到S、t的函數(shù)關(guān)系式;
(2)四邊形OPBQ的面積,可由矩形OABC、△QBC、△ABP的面積差求得,進而可得到所求的定值;
(3)若△OPQ與△PAB和△QPB相似,那么△QPB必為直角三角形,且∠QPB=90°;由于∠BQP≠∠OPQ,所以這三個相似三角形的對應(yīng)關(guān)系是△OPQ∽△PBQ∽△ABP,根據(jù)相似三角形得到的比例線段求出t的值,進而可確定點P的坐標(biāo),求出拋物線和直線BP的解析式;可設(shè)M點的橫坐標(biāo)為m,根據(jù)直線BP和拋物線的解析式,求出M、N的縱坐標(biāo),進而可得到關(guān)于MN的長與m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出MN的最大值及對應(yīng)的M點坐標(biāo);設(shè)BQ與直線MN的交點為H,根據(jù)M點的坐標(biāo)和直線BQ的解析式即可求出H點的坐標(biāo),也就能得到MH的長,以MH為底,B、M橫坐標(biāo)差的絕對值為高,可求出△BHM的面積,進而可根據(jù)四邊形OPBQ的面積求出五邊形OPMHQ的面積,由此可求出它們的比例關(guān)系式.
解答:(1)解:∵CQ=t,OP=t,CO=8,
∴OQ=8-t.
∴S△OPQ=(0<t<8);(3分)

(2)證明:∵S四邊形OPBQ=S矩形ABCO-S△CBQ-S△PAB
==32;(5分)
∴四邊形OPBQ的面積為一個定值,且等于32;(6分)

(3)解:當(dāng)△OPQ與△PAB和△QPB相似時,△QPB必須是一個直角三角形,依題意只能是∠QPB=90°,
又∵BQ與AO不平行,
∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ,
∴根據(jù)相似三角形的對應(yīng)關(guān)系只能是△OPQ∽△PBQ∽△ABP(7分),
=,

解得:t1=4,t2=8
經(jīng)檢驗:t=4是方程的解且符合題意,t=8不是方程的解,舍去;(從邊長關(guān)系和速度考慮),
∴QO=4,
∴直線QB的解析式為:y=x+4,
此時P(,0);
∵B(,8)且拋物線經(jīng)過B、P兩點,
∴拋物線是,直線BP是:(8分).
設(shè)M(m,)、N(m,).
∵M在BP上運動,

交于P、B兩點且拋物線的頂點是P;
∴當(dāng)時,y1<y2(9分)
∴MN=|y1-y2|
=|m2-2m+8-(m-8)|
=m-8-(m2-2m+8)
=m-8-m2+2m-8
=-m2+3m-16
=,
∴當(dāng)時,MN有最大值是2;
∴設(shè)MN與BQ交于H點則,;
∴S△BHM==
∴S△BHM:S五邊形QOPMH==3:29
∴當(dāng)MN取最大值時兩部分面積之比是3:29.(10分)
點評:此題是二次函數(shù)的綜合類試題,涉及到矩形的性質(zhì)、相似三角形的判定和性質(zhì)、圖形面積的求法以及二次函數(shù)的應(yīng)用等重要知識點,綜合性強,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案