【題目】如圖,RtABC中,∠C90°,∠B30°,AC.按以下步驟作圖:

①以A為圓心,以小于AC長為半徑畫弧,分別交AC、AB于點E、D;

②分別以D、E為圓心,以大于DE長為半徑畫弧,兩弧相交于點P

③連接APBC于點F

那么BF的長為( 。

A.B.3C.2D.

【答案】C

【解析】

根據(jù)直角三角形兩銳角互余,求出∠BAC的度數(shù),再根據(jù)作圖可知AF平分∠BAC,然后求出∠CAF=∠BAF30°,根據(jù)30°角所對的直角邊等于斜邊的一半可得CFAF,在RtACF中,利用勾股定理列式求出AF的長度,再根據(jù)等角對等邊的性質可得BFAF,從而得解.

解:∵∠C90°,∠B30°,

∴∠BAC90°30°60°,

由作圖可知,AF平分∠BAC,

∴∠CAF=∠BAF30°,

CFAF,

RtACF中,AC2+CF2AF2,

+AF2AF2,

解得AF2

又∵∠BAF=∠B30°,

BFAF2

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】哈市某中學為了豐富校園文化生活.校學生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學生都參加.且只能參加一項比賽.圍繞你參賽的項目是什么?(只寫一項)”的問題,校學生會在全校范圍內隨機抽取部分學生進行問卷調查。將調查問卷適當整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為13.請你根據(jù)以上信息回答下列問題:

(1)通過計算補全條形統(tǒng)計圖;

(2)在這次調查中,一共抽取了多少名學生?

(3)如果全校有680名學生,請你估計這680名學生中參加演講比賽的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點.正方形ABCD的頂點CD在第一象限,頂點D在反比例函數(shù)k≠0)的圖象上.若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖象上,則n的值是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以坐標原點O為圓心,2為半徑畫,P上一動點,且P在第一象限內,過點P的切線與x軸相交于點A,與y軸相交于點B.在上存在點Q,使得以Q、O、A、P為頂點的四邊形是平行四邊形,請寫出Q點的坐標_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點CAB上方的圓上一動點,過點C作⊙O的切線l,過點A作直線l的垂線AD,交⊙O于點D,連接OC,CD,BCBD,且BDOC交于點 E

1)求證:△CDE≌△CBE;

2)若AB6,填空:

①當的長度是   時,△OBE是等腰三角形;

②當BC   時,四邊形OADC為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB于點E

1)如圖①,若CD8,BE2,求⊙O的半徑;

(2)如圖②,點G上一點,AG的延長線與DC的延長線交于點F,求證:∠AGD=∠FGC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB是⊙O的直徑,AB=12,P上任意一點(不與點B,C重合),直線CPAB的延長線于點Q,⊙O在點P處的切線PDBQ于點D,則下列結論:①若∠PAB=30°,則的長為π;②若PDBC,則AP平分∠CAB;③若PB=BD,則PD=6;④無論點P上的位置如何變化,CPCQ=108.其中正確結論的序號為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:

b24ac0;方程ax2+bx+c=0的兩個根是x1=1,x2=3③3a+c=0;

y0時,x的取值范圍是﹣1x3x0時,yx增大而減小.

其中結論正確的個數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案