如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD于M,下列四個(gè)結(jié)論:
①CM=DM,②AC=AD,③=,④∠C=∠D.
其中成立的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:連接AC,AD,根據(jù)垂徑定理判斷求解.
解答:解:連接AC,AD,
由垂徑定理知,點(diǎn)M是CD的中點(diǎn),點(diǎn)B是弧CD的中點(diǎn),點(diǎn)A是弧CAD的中點(diǎn),
則有:CM=DM,弧BC=弧BD,弧AC=弧AD,
由圓周角定理知,∠C=∠D,
∴①②④成立.③錯(cuò)誤.
故選C.
點(diǎn)評(píng):本題利用了:1、垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩段。
2、圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點(diǎn),AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長(zhǎng)線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內(nèi)一點(diǎn),且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點(diǎn),且它關(guān)于AC的對(duì)稱點(diǎn)是D′,BD′=
5
,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D點(diǎn)是BC的中點(diǎn),DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),則圖中全等三角形共有
3
3
對(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案