【題目】如圖,ABC中,ABACADCE是高,連接DE

1)求證:BC2DE;

2)若∠BAC50°,求∠ADE的度數(shù).

【答案】1)見解析;(2)∠ADE40°.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到BDCD,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;

2)根據(jù)等腰三角形的性質(zhì)得到∠BADBAC,求得∠BAD25°,根據(jù)三角形的內(nèi)角和定理得到∠BCE=∠BAD25°,于是得到結(jié)論.

解:(1)∵ABACADBC,

BDCD,

CEAB,

∴∠BEC90°,

DEBDCD,

BC2DE;

2)∵ABAC,ADBC,,

∴∠BADBAC,

∵∠BAC50°,

∴∠BAD25°,

ADBC,CEAB,

∴∠ADB=∠CEB90°,

∵∠B=∠B,

∴∠BCE=∠BAD25°

DECD,

∴∠DEC=∠DCE25°

∴∠BDE50°,

∴∠ADE40°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點坐標為(,﹣2);⑤當x時,yx的增大而減;⑥a+b+c0正確的有( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為10的⊙中,弦,所對的圓心角分別是,若,則弦的長等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系中,點Ay軸上,點C軸上,OC=4,直線經(jīng)過點A,交軸于點D,點E在線段BC上,EDAD.

1)求點E的坐標;

2)聯(lián)結(jié)BD,求cotBDE的值;

3)點G在直線BC,且∠EDG=45°,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點DBC的中點,點EAC上,將CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點D,點C為拋物線的頂點,過BC兩點作直線BC,拋物線上的一點F的橫坐標是,過點F作直線FG//BCx軸于點G.

1)點P是直線BC上方拋物線上的一動點,連接PG與直線BC交于點E,連接EF,PF,當的面積最大時,在x軸上有一點R,使PR+CR的值最小,求出點R的坐標,并直接寫出PR+CR的最小值;

2)如圖2,連接AD,作AD的垂直平分線與x軸交于點K,平移拋物線,使拋物線的頂點C在射線BC上移動,平移的距離是t,平移后拋物線上點A,點C的對應點分別為點A′,點C′,連接A′C′,A′KC′K,A′C′K是否能為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法合理的是(  )

A. 小明做了3次擲圖釘?shù)膶嶒,發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是

B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎

C. 某射擊運動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC4tanB2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.

1)求出yx的函數(shù)關系式;

2問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案