【題目】如圖,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以取( 。
A.2B.3C.4D.5
【答案】B
【解析】
已知等腰三角形ABC中tanB=2,根據(jù)題意可求得△ABC中過(guò)頂點(diǎn)A的高AF的長(zhǎng)度,進(jìn)而求得AB的長(zhǎng)度,以及得到BD=,;因?yàn)?/span>AF和CD均為中線,故交點(diǎn)為重心,通過(guò)重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1,可求出CD的長(zhǎng)度為,所以要滿足B點(diǎn)在⊙D內(nèi),即滿足r大于BD長(zhǎng)度;要滿足點(diǎn)C在⊙D外即r小于CD長(zhǎng)度.
如圖,過(guò)點(diǎn)A作AF⊥BC于點(diǎn)F,連接CD交AF于點(diǎn) G,
∵AB=AC,BC=4,
∴BF=CF=2,
∵tanB=2,
∴,即AF=4,
∴AB=,
∵D為AB的中點(diǎn),
∴BD=,G是△ABC的重心,
∴GF=AF=,
∴CG= ,
∴CD=CG=,
∵點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,
∴<r<,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段、、滿足a︰b︰c=3︰2︰6,且.
(1)求、、的值;
(2)若線段是線段、的比例中項(xiàng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、CE是高,連接DE.
(1)求證:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8cm,BC=16cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A停止,同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形;
(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣2x+6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB≌△POC?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將矩形紙片ABCD(AD>AB)沿BD折疊,點(diǎn)C落在點(diǎn)C′處.
(1)連接BD,請(qǐng)用直尺和圓規(guī)在圖1中作出點(diǎn)C′;(不寫(xiě)作法,保留作圖痕跡)
(2)若BC′與AD相交于點(diǎn)E,EB與ED的數(shù)量關(guān)系是 ;連接AC′,則AC′與BD的位置關(guān)系是 ;
(3)在(2)的條件下,若AB=4,AD=8,求BE的長(zhǎng).(提示:(2)、(3)兩題可以在圖2中作出草圖完成)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于點(diǎn).
(1)求該二次函數(shù)的解析式,并在下圖中畫(huà)出示意圖;
(2)將該二次函數(shù)的圖象向上平移幾個(gè)單位長(zhǎng)度,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球賽是同學(xué)們比較喜歡的體育比賽.你知道嗎,一個(gè)足球被從地面向上踢出,它距地面的高度可以用二次函數(shù)刻畫(huà),其中表示足球被踢出后經(jīng)過(guò)的時(shí)間.
(1)方程的根的實(shí)際意義是________.
(2)問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間,足球到達(dá)它的最高點(diǎn)?最高點(diǎn)的高度是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com