如圖,直角坐標(biāo)系中,點(diǎn)B(a,0),點(diǎn)C(0,b),點(diǎn)A在第一象限.若a,b滿足(a-t)2+|b-t|=0(t>0).
(1)證明:OB=OC;
(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點(diǎn),連接AF,OA,當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不過點(diǎn)C)時(shí),證明:∠OAF的大小不變;
(3)如圖2,B′與B關(guān)于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點(diǎn)T,過T作TQ⊥MN交y軸于點(diǎn)Q,求點(diǎn)Q的坐標(biāo).
分析:(1)根據(jù)a=t,b=t,推出a=b即可;
(2)延長AF至T,使TF=AF,連接TC,TO,證△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再證△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO為等腰直角三角形即可;
(3)連接MQ,NQ,BQ,B′Q,過M作MH∥CN交x軸于H,證△NTB′≌△MTH,推出TN=MT,證△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.
解答:(1)解:∵a,b滿足(a-t)2+|b-t|=0(t>0).
∴a-t=0,b-t=0,
∴a=t,b=t,
∴a=b,
∵B(t,0),點(diǎn)C(0,t)
∴OB=OC;

(2)證明:延長AF至T,使TF=AF,連接TC,TO,
∵F為CE中點(diǎn),
∴CF=EF,
在△TCF和△AEF中
CF=EF
∠CFT=∠EFA
FT=AF

∴△TCF≌△AEF(SAS),
∴CT=AE,∠TCF=∠AEF,
∴TC∥AD,
∴∠TCD=∠CDA,
∵AB=AE,
∴TC=AB,
∵AD⊥AB,OB⊥OC,
∴∠COB=∠BAD=90°,
∴∠ABO+∠ADO=180°,
∵∠ADO+∠ADC=180°,
∴∠ADC=∠ABO,
∵∠TCD=∠CDA,
∴∠TCD=∠ABO,
在△TCO和△ABO中
TC=AB
∠TCO=∠ABO
OC=OB

∴△TCO≌△ABO(SAS),
∴TO=AO,∠TOC=∠AOB,
∵∠AOB+∠AOC=90°,
∴∠TOC+∠AOC=90°,
∴△TAO為等腰直角三角形,
∴∠OAF=45°;

(3)解:連接MQ,NQ,BQ,B′Q,過M作MH∥CN交x軸于H,
∵B和B′關(guān)于y軸對稱,C在y軸上,
∴CB=CB′,
∴∠CBB′=∠CB′B,
∵M(jìn)H∥CN,
∴∠MHB=∠CB′B,
∴∠MHB=∠CBB′,
∴MH=BM,
∵BM=B′N,
∴MH=B′N,
∵M(jìn)H∥CN,
∴∠NB′T=∠MHT,
∵在△NTB′和△MTH中
∠NB′T=∠MHT
∠B′TN=∠MTH
B′N=MH

∴△NTB′≌△MTH(AAS),
∴TN=MT,又TQ⊥MN,
∴MQ=NQ,
∵CQ垂直平分BB′,
∴BQ=B′Q,
∵在△NQB′和△MQB中
B′N=BM
B′Q=BQ
NQ=MQ

∴△NQB′≌△MQB (SSS),
∴∠NB′Q=∠CBQ,
而∠NB′Q+∠CB′Q=180°
∴∠CBQ+∠CB′Q=180°
∴∠B′CB+∠B′QB=180°,
又∵BO=CO,B′O=CO,
∴∠B′CB=90°,
∴∠B′QB=90°
∴△BQB′是等腰直角三角形,
∴OQ=OB=t,
∴Q(0,-t).
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定,坐標(biāo)與圖形性質(zhì),等腰三角形的性質(zhì),等腰直角三角形的性質(zhì)和判定,相等垂直平分線,偶次方,絕對值等知識點(diǎn)的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,A點(diǎn)坐標(biāo)為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,已知點(diǎn)A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點(diǎn)E是直線OC與正方形ABCD的外接圓除點(diǎn)C以外的另一個(gè)交點(diǎn),連接AE與BC相交于點(diǎn)F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點(diǎn),試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點(diǎn)G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線AF的對稱點(diǎn)在x軸上精英家教網(wǎng)?若存在,請求出所有這樣的點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請解答下列問題:
(1)把△ABC向左平移4個(gè)單位,再向上平移3個(gè)單位,恰好得到△A1B1C1試寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中畫出△A1B1C1
(3)求出線段AA1的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,C點(diǎn)坐標(biāo)為(1,2),原來△ABC各個(gè)頂點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個(gè)頂點(diǎn)坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對應(yīng)點(diǎn)坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個(gè)單位長度,再向
平移
2
2
個(gè)單位長度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊答案