【題目】如圖,斜坡AB長130米,坡度i=1:2.4,BC⊥AC,
(1)BC= m,AC= m;
(2)現(xiàn)在計(jì)劃在斜坡AB的中點(diǎn)D處挖去部分坡體修建一個(gè)平行于水平線CA的平臺(tái)DE和一條新的斜坡BE,若斜坡BE的坡角為30°,求平臺(tái)DE的長;(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
【答案】(1)BC=50m,AC=120m;(2)平臺(tái)DE的長約為16.8m
【解析】
(1)直接利用坡比的定義結(jié)合勾股定理得出BC,AC的長;
(2)求得出BF,DF的長,然后在直角△BEF中利用三角函數(shù)求得EF的長,即可得出答案.
(1)∵AB長130米,坡度i=1:2.4,
∴設(shè)BC=xm,AC=2.4xm,
則x2+(2.4x)2=1302,
解得:x=50,
則2.4x=120m,
故BC=50m,AC=120m.
(2)延長DE到BC于點(diǎn)F,
∵D為AB的中點(diǎn),
∴可得F是BC的中點(diǎn),
∴BF=25m,
∴DF=25×2.4=60(m),
∵∠BEF=30°,
∴EF=,
∴DE=DF-EF=60-25≈16.8,
答:平臺(tái)DE的長約為16.8米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:
來源: 題型:【題目】如圖,AB是半圓O的直徑,C是AB延長線上的點(diǎn),AC的垂直平分線交半圓于點(diǎn)D,交AC于點(diǎn)E,連接DA,DC.已知半圓O的半徑為3,BC=2.
(1)求AD的長.
(2)點(diǎn)P是線段AC上一動(dòng)點(diǎn),連接DP,作∠DPF=∠DAC,PF交線段CD于點(diǎn)F.當(dāng)△DPF為等腰三角形時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借一段墻體(墻體的最大可用長度a=10m),設(shè)AB的長為xm,所圍的花圃面積為ym2,則y的最大值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A. 30.6 B. 32.1 C. 37.9 D. 39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在樓頂點(diǎn)A處觀察旗桿CD測得旗桿頂部C的仰角為30°,旗桿底部D的俯角為45°.已知樓高AB=9 m,則旗桿CD的高度為___________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長線交于點(diǎn)E.連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個(gè)月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價(jià)為x(120>x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),月銷售額為14000元,此月共盈利多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為預(yù)防疾病,某校對教室進(jìn)行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量(mg)與燃燒時(shí)間(分鐘)成正比例;燃燒后, 與成反比例(如圖所示).現(xiàn)測得藥物10分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問題:
(1)求藥物燃燒時(shí)與的函數(shù)關(guān)系式.(2)求藥物燃燒后與的函數(shù)關(guān)系式.
(3)當(dāng)每立方米空氣中含藥量低于1.6mg時(shí),對人體方能無毒害作用,那么從消毒開始,經(jīng)多長時(shí)間學(xué)生才可以回教室?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com