【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD并于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.
(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時(shí),四邊形DEBF是矩形?請(qǐng)說明理由.
【答案】
(1)證明:∵平行四邊形ABCD,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,∠DFO=∠OEB,
在△DOF和△BOE中,
,
∴△DOF≌△BOE(AAS),
∴OE=OF;
(2)若EF=BD時(shí),四邊形DEBF為矩形,理由為:
∵△DOF≌△BOE,
∴DF=BE,
∵DF∥BE,
∴四邊形DEBF為平行四邊形,
∵EF=BD,
∴四邊形DEBF為矩形.
【解析】(1)由平行四邊形的對(duì)邊平行且相等,得到DC與AB平行,利用兩直線平行內(nèi)錯(cuò)角相等得到兩對(duì)角相等,再由對(duì)角線互相平分得到OD=OB,利用AAS得到三角形DOF與三角形BOE全等,利用全等三角形對(duì)應(yīng)邊相等即可得證;(2)EF與BD相等時(shí),四邊形DEBF是矩形,理由為:由DF與BE平行且相等得到四邊形DEBF為平行四邊形,利用對(duì)角線互相平分的平行四邊形是矩形即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)矩形的判定方法的理解,了解有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連接AG,點(diǎn)E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F處.若△FDE的周長(zhǎng)為5,△FCB的周長(zhǎng)為17,則FC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋里裝有2個(gè)紅球,1個(gè)白球,1個(gè)黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率.
(2)摸出一個(gè)球,記下顏色后不放回,攪拌均勻,再摸出1個(gè)球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系內(nèi),A(﹣1,0),B(3,0),點(diǎn)D是線段AB上任意一點(diǎn)(點(diǎn)D不與A,B重合),過點(diǎn)D作AB的垂線l.點(diǎn)C是l上一點(diǎn),且∠ACB是銳角,連結(jié)AC,BC,作AE⊥BC于點(diǎn)E,交CD于點(diǎn)H,連結(jié)BH,設(shè)△ABC面積為S1 , △ABH面積為S2 , 則S1S2的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中:
①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時(shí),d隨x的增大而增大;
④滿足d=5的點(diǎn)P有四個(gè).
其中正確結(jié)論的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動(dòng)時(shí),鐵環(huán)鉤保持與鐵環(huán)相切.將這個(gè)游戲抽象為數(shù)學(xué)問題,如圖2.已知鐵環(huán)的半徑為25cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點(diǎn)為M,鐵環(huán)與地面接觸點(diǎn)為A,∠MOA=α,且sinα= .
(1)求點(diǎn)M離地面AC的高度BM;
(2)設(shè)人站立點(diǎn)C與點(diǎn)A的水平距離AC=55cm,求鐵環(huán)鉤MF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線y= ,經(jīng)過點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A、B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com