【題目】如圖,在平行四邊形ABCD中,點E、F分別是AD、BC的中點,AC與EF相交于點O.
(1)過點B作AC的平行線BG,延長EF交BG于H;
(2)在(1)的圖中,找出一個與△BHF全等的三角形,并證明你的結(jié)論.

【答案】
(1)解:如圖:


(2)結(jié)論:△BHF≌△COF.

理由是:∵AC∥BH,∴∠FBH=∠FCO,

又∵BF=CF,∠BFH=∠CFO,

∴△BHF≌△COF(ASA).


【解析】(1)根據(jù)平行線的作法,即可作出BG,再延長EF即可,如圖;(2)根據(jù)圖可得出△BHF≌△COF,由AC∥BH,得∠FBH=∠FCO,再由BF=CF,得出結(jié)論即可.
【考點精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:
(1) ﹣tan45°+sin245°
(2)|﹣ |+ ﹣sin30°+(π+3)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AO=10,AB=8,分別以O(shè)C、OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,點D(3,10)、E(0,6),拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運(yùn)動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運(yùn)動,當(dāng)點P運(yùn)動到點C時,兩點同時停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使四邊形MENC是平行四邊形?若存在,請直接寫出點M與點N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.

(1)直接寫出ED和EC的數(shù)量關(guān)系:
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當(dāng)BC= 時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論錯誤的是(
A.BD平分∠ABC
B.△BCD的周長等于AB+BC
C.AD=BD=BC
D.點D是線段AC的中點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過A(6,0)和B(0,12)兩點,且與直線y=x交于點C.

(1)求直線l的解析式;
(2)若點P(x,0)在線段OA上運(yùn)動,過點P作l的平行線交直線y=x于D,求△PCD的面積S與x的函數(shù)關(guān)系式;S有最大值嗎?若有,求出當(dāng)S最大時x的值;

(3)若點P(x,0)在x軸上運(yùn)動,是否存在點P,使得△PCA成為等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校志愿者團(tuán)隊在重陽節(jié)購買了一批牛奶到“夕陽紅”敬老院慰問孤寡老人,如果給每個老人分5盒,則剩下38盒,如果給每個老人分6盒,則最后一個老人不足5盒,但至少分得一盒.
(1)設(shè)敬老院有x名老人,則這批牛奶共有多少盒?(用含x的代數(shù)式表示).
(2)該敬老院至少有多少名老人?最多有多少名老人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一根40cm的金屬棒,欲將其截成x根7cm的小段和y根9cm的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)x,y應(yīng)分別為(
A.x=1,y=3
B.x=4,y=1
C.x=3,y=2
D.x=2,y=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,E為BC中點,兩個動點M和N分別在邊CD和AD上運(yùn)動且MN=1,若△ABE與以D、M、N為頂點的三角形相似,則DM=

查看答案和解析>>

同步練習(xí)冊答案