【題目】化簡:
(1) ﹣tan45°+sin245°
(2)|﹣ |+ ﹣sin30°+(π+3)0

【答案】
(1)解:原式= ﹣1+ =
(2)解:原式= +3﹣ +1=4.
【解析】(1)原式利用特殊角的三角函數(shù)值計算即可得到結果;(2)原式利用絕對值的代數(shù)意義,算術平方根定義,以及零指數(shù)冪法則計算即可得到結果.
【考點精析】根據題目的已知條件,利用零指數(shù)冪法則和特殊角的三角函數(shù)值的相關知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在開展“經典閱讀”活動中,某學校為了解全校學生利用課外時間閱讀的情況,學校團委隨機抽取若干名學生,調查他們一周的課外閱讀時間,并根據調查結果繪制了如下尚不完整的統(tǒng)計表.根據圖表信息,解答下列問題: 頻率分布表

閱讀時間
(小時)

頻數(shù)
(人)

頻率

1≤x<2

18

0.12

2≤x<3

a

m

3≤x<4

45

0.3

4≤x<5

36

n

5≤x<6

21

0.14

合計

b

1


(1)填空:a= , b= , m= , n=
(2)將頻數(shù)分布直方圖補充完整(畫圖后請標注相應的頻數(shù));
(3)若該校由3000名學生,請根據上述調查結果,估算該校學生一周的課外閱讀時間不足三小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)解方程: + =4.
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形三個內角度數(shù)的比為1:2:3,那么這個三角形最小角的正切值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF= ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點,且經過圓心O,邊AB與⊙O相切,切點為B.如果∠A=34°,那么∠C等于(

A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點E,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內部,將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E、F分別是AD、BC的中點,AC與EF相交于點O.
(1)過點B作AC的平行線BG,延長EF交BG于H;
(2)在(1)的圖中,找出一個與△BHF全等的三角形,并證明你的結論.

查看答案和解析>>

同步練習冊答案