【題目】如圖,在平面直角坐標系xOy中,一次函數的圖象與x軸、y軸分別交于點A、B,把Rt△AOB繞點A順時針旋轉角α(30°<α<180°),得到△AO′B′.
(1)當α=60°時,判斷點B是否在直線O′B′上,并說明理由;
(2)連接OO′,設OO′與AB交于點D,當α為何值時,四邊形ADO′B′是平行四邊形?請說明理由.
【答案】(1)點B(0,1)在直線O′B′上;(2)當α=120°時,四邊形ADO′B′是平行四邊形.
【解析】
試題分析:(1)首先證明∠BAO=30°,再求出直線O′B′的解析式即可解決問題.
(2)如圖2中,當α=120°時,四邊形ADO′B′是平行四邊形.只要證明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解決問題.
試題解析:解;(1)如圖1中,∵一次函數的圖象與x軸、y軸分別交于點A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋轉角為60°,∴B′(,2),O′(,),設直線O′B′解析式為y=kx+b,∴,,解得:,∴直線O′B′的解析式為,∵x=0時,y=1,∴點B(0,1)在直線O′B′上.
(2)如圖2中,當α=120°時,四邊形ADO′B′是平行四邊形.
理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四邊形ADO′B′是平行四邊形.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“震災無情人有情”.民政局將全市為四川受災地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中正確的是( 。
A. 兩條對角線互相平分的四邊形是平行四邊形
B. 兩條對角線相等的四邊形是矩形
C. 兩條對角線互相垂直的四邊形是菱形
D. 兩條對角線互相垂直且平分的四邊形是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護視力,學校計劃開展“愛眼護眼”視力保健活動,為使活動更具有實效性,先對學生視力情況進行調查,隨機抽取40名學生,檢查他們的視力,并繪制不完整的直方圖(數據包括左端點不包括右端點,精確到0.1),請結合直方圖的信息解答下列問題:
(1)統(tǒng)計圖中,4.8≤x<5.0的學生數是人;
(2)將頻數分布直方圖補充完整;
(3)若繪制“學生視力扇形統(tǒng)計圖”,視力達到4.8及以上為達標,則視為達標學生所對應扇形的圓心角度數為°;
(4)若全校共有800名學生,則視力達標的學生估計有名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【閱讀】
我們分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,
其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M﹣N,若M﹣N>0,則M>N;若M﹣N=0,則M=N;若M﹣N<0,則M<N.
【運用】
利用“作差法”解決下列問題:
(1)小麗和小穎分別兩次購買同一種商品,小麗兩次都買了m千克商品,小穎兩次購買商品均花費n元,已知第一次購買該商品的價格為a元/千克,第二次購買該商品的價格為b元/千克(a,b是整數,且a≠b),試比較小麗和小穎兩次所購買商品的平均價格的高低.
(2)奶奶提一籃子玉米到集貿市場去兌換大米,每2kg玉米兌換1kg大米,商販用秤稱得連籃子帶玉米恰好20kg,于是商販連籃子帶大米給奶奶共10kg,在這個過程中誰吃了虧?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com