【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根據(jù)正方形性質(zhì)和翻折的性質(zhì),得到AB=AF,∠B=∠AFG=90°,利用HL定理即可判定①正確;求出DE、CE的長,從而得到EF,設(shè)BG=x,然后表示出GF,再求出CG、EG的長,然后在Rt△CEG中,利用勾股定理列式求出x的值,從而得到BG=CG,判定②正確;再根據(jù)等邊對等角的性質(zhì)得到∠GCF=∠GFC,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠GCF+∠GFC=∠AGB+∠AGF,從而求出∠GCF=∠AGB,根據(jù)同位角相等,兩直線平行即可證明AG∥CF,判定③正確;先求出△CEG的面積,再根據(jù)等高的三角形的面積的比等于底邊的比求出△FGC的面積為,判定④錯(cuò)誤.
解:∵四邊形ABCD是正方形,
∴AB=AD=DC=6,∠B=∠D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折疊得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL),
∴①正確;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF,
設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,
∵CG=6-x,CE=4,EG=x+2
∴(6-x)2+42=(x+2)2
解得:x=3,
∴BG=GF=CG=3,
∴②正確;
∵CG=GF,
∴∠CFG=∠FCG,
∵∠BGF=∠CFG+∠FCG,
又∵∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF,
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG,
∴AG∥CF,
∴③正確;
∵△CFG和△CEG中,分別把FG和GE看作底邊,
則這兩個(gè)三角形的高相同.
∴==,
∵S△CEG=×3×4=6,
∴S△FGC=×6=,
∴④錯(cuò)誤;
正確的結(jié)論有3個(gè).
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:b是最小的正整數(shù)且a、b滿足,試回答問題.
(1)請直接寫出a、b、c的值.
a= b= c= .
(2)a、b、c所對應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動點(diǎn),其對應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動時(shí)(即0≤x≤2時(shí)),請化簡式子:(請寫出化簡過程)
(3)在(1)(2)的條件下,若點(diǎn)D從A點(diǎn)開始以每秒1的速度向左運(yùn)動,同時(shí)點(diǎn)E從B點(diǎn)開始以每秒2個(gè)單位長度向右運(yùn)動,點(diǎn)F從C點(diǎn)開始以每秒5個(gè)單位長度的速度向右運(yùn)動,設(shè)它們運(yùn)動的t秒,請問,EF﹣DE的值是否隨著時(shí)間t的變化而變化?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】典典同學(xué)學(xué)完統(tǒng)計(jì)知識后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖:
請根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計(jì)圖中a= ,b= ;并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該轄區(qū)共有居民3500人,請估計(jì)年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①點(diǎn)C是線段AB的中點(diǎn),則AC=2AB;
②1.25°等于125分鐘;
③時(shí)鐘五點(diǎn)整時(shí)針與分針?biāo)鶚?gòu)成的角120°;
④經(jīng)過兩點(diǎn)有且只有一條直線;
⑤利用圓規(guī)配合刻度尺可以進(jìn)行線段的度量,也能比較它們的大;
⑥五邊形的對角線總條數(shù)有10條;
⑦用放大鏡看角,角的度數(shù)會增大.
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一次,小明坐著輪船由A點(diǎn)出發(fā)沿正東方向AN航行,在A點(diǎn)望湖中小島M,測得∠MAN=30°,航行100米到達(dá)B點(diǎn)時(shí),測得∠MBN=45°,你能算出A點(diǎn)與湖中小島M的距離嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①無理數(shù)都是無限小數(shù);
②的算術(shù)平方根是3;
③數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對應(yīng);
④平方根與立方根等于它本身的數(shù)是0和1;
⑤若點(diǎn)A(﹣2,3)與點(diǎn)B關(guān)于x軸對稱,則點(diǎn)B的坐標(biāo)是(﹣2,﹣3).
其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)F在AD上,且AF=AB,AE平分∠BAD交BC于點(diǎn)E,連接EF,BF,與AE交于點(diǎn)O.
(1)求證:四邊形ABEF是菱形;
(2)若四邊形ABEF的周長為40,BF=10,求AE的長及四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中:
(1)畫出△ABC關(guān)于y軸對稱的△DEF(其中D、E、F是A、B、C的對應(yīng)點(diǎn))
(2)寫出D、E、F的坐標(biāo);
(3)求出△DEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com