【題目】2018年1月25日,濟南至成都方向的高鐵線路正式開通,高鐵平均時速為普快平均時速的4倍,從濟南到成都的高鐵運行時間比普快列車減少了26小時.已知濟南到成都的火車行車里程約為2288千米,求高鐵列車的平均時速.
【答案】高鐵列車的平均時速為264千米/小時
【解析】分析: 設(shè)普快的平均時速為x千米/小時,高鐵列車的平均時速為4x千米/小時,根據(jù)題意可得,高鐵走2288千米比普快減少了26小時,據(jù)此列方程求解;
詳解:
設(shè)普快列車的平均時速為x千米/小時,
根據(jù)題意得
解得x=66
經(jīng)檢驗,x=66不是增根,
∴原方程的解為x=66
∴4x=66×4=264
答:高鐵列車的平均時速為264千米/小時.
點睛: 本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程求解,注意檢驗.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
數(shù)學課上,老師出示了這樣一個問題:
如圖1,正方形為中,點、在對角線上,且,探究線段、、之間的數(shù)量關(guān)系,并證明.
某學習小組的同學經(jīng)過思考,交流了自己的想法:
小明:“通過觀察和度量,發(fā)現(xiàn)與存在某種數(shù)量關(guān)系”;
小強:“通過觀察和度量,發(fā)現(xiàn)圖1中線段與相等”;
小偉:“通過構(gòu)造(如圖2),證明三角形全等,進而可以得到線段、、之間的數(shù)量關(guān)系”.
老師:“此題可以修改為‘正方形中,點在對角線上,延長交于點,在上取一點,連接(如圖3).如果給出、的數(shù)量關(guān)系與、的數(shù)量關(guān)系,那么可以求出的值”.
請回答:
(1)求證:;
(2)探究線段、、之間的數(shù)量關(guān)系,并證明;
(3)若,,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是菱形,點A的坐標為(0,),分別以A,B為圓心,大于AB的長為半徑作弧,兩弧交于點E,F,直線EF恰好經(jīng)過點D,則點D的坐標為( 。
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若菱形的周長為24cm,一個內(nèi)角為60°,則菱形的面積為( 。
A. 4cm2B. 9cm2C. 18cm2D. 36cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOD=45°,按下列要求畫圖并回答問題:
(1)利用三角尺,在直線AB上方畫射線OE,使OE⊥AB;
(2)利用圓規(guī),分別在射線OA、OE上截取線段OM、ON,使OM=ON,連接MN;
(3)利用量角器,畫∠AOD的平分線OF交MN于點F;
(4)直接寫出∠COF= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線EF與MN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OA與MN重合,OB在∠NOE內(nèi)部.操作:將三角尺繞點O以每秒5°的速度沿順時針方向旋轉(zhuǎn)一周,設(shè)運動時間為t(s).
(1)當t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;
(2)若在三角尺轉(zhuǎn)動的同時,直線EF也繞點O以每秒8°的速度順時針方向旋轉(zhuǎn)一周,當一方先完成旋轉(zhuǎn)一周時,另一方同時停止轉(zhuǎn)動.
①當t為何值時,OE平分∠AOB?
②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限作等邊△ABC.
(1)若點C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;
(2)點P(2,m)在第一象限,過點P作x軸的垂線,垂足為D,當△PAD與△OAB相似時,P點是否在(1)中反比例函數(shù)圖象上?如果在,求出P點坐標;如果不在,請加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,將理由補充完整.
如圖,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求證:FG∥BC
證明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定義)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定義)
∴∠1=∠2 ( )
∴∠1=∠3(等量代換)
∴FG∥BC ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com