【題目】在研究相似問(wèn)題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:

甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形相似.

對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是(

A.甲對(duì),乙不對(duì) B.甲不對(duì),乙對(duì) C.兩人都對(duì) D.兩人都不對(duì)

【答案】A

【解析】

試題分析:根據(jù)題意得:ABAB,ACAC,BCBC,

∴∠A=A,B=B,

∴△ABC∽△ABC,

甲說(shuō)法正確;

乙:根據(jù)題意得:AB=CD=3,AD=BC=5,則AB=CD=3+2=5,AD=BC=5+2=7,

==, ==,

,

新矩形與原矩形不相似.

乙說(shuō)法不正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:sin30°tan30°,sin45°tan45°1,sin60°tan60°,由此我們可以看到tan30°sin30°tan45°sin45°,tan60°sin60°,那么對(duì)于任意銳角α,是否可以得到tanαsinα呢?請(qǐng)結(jié)合銳角三角函數(shù)的定義加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿(mǎn)足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷(xiāo)售這種商品,每天要獲得1500元利潤(rùn),那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?(3)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法錯(cuò)誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過(guò)拋一枚均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A2,4),B1,1),C4,3).

1)請(qǐng)畫(huà)出ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的A1B1C1;并寫(xiě)出A1B1、C1三點(diǎn)的坐標(biāo).

2)求出(1)中C點(diǎn)旋轉(zhuǎn)到C1點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱(chēng)軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線(xiàn)上兩點(diǎn),則y1<y2, 其中結(jié)論正確的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣x+5y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線(xiàn)y=﹣x2+bx+c過(guò)A、B兩點(diǎn).

1)寫(xiě)出點(diǎn)AB的坐標(biāo);

2)求拋物線(xiàn)的解析式;

3)過(guò)點(diǎn)AAC平行于x軸,交拋物線(xiàn)于點(diǎn)C,點(diǎn)P為拋物線(xiàn)上的一動(dòng)點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱(chēng)“大玉米”)坐落在風(fēng)景如畫(huà)的如意湖,是來(lái)鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華同學(xué)決定用自己學(xué)到的知識(shí)測(cè)量“大王米”的高度,他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.測(cè)量項(xiàng)目及結(jié)果如下表:

項(xiàng)目

內(nèi)容

課題

測(cè)量鄭州會(huì)展賓館的高度

測(cè)量示意圖

如圖,在E點(diǎn)用測(cè)傾器DE測(cè)得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點(diǎn)用測(cè)傾器CF測(cè)得樓頂B的仰角是β,且點(diǎn)AB、C、DE、F均在同一豎直平面內(nèi)

測(cè)量數(shù)據(jù)

α的度數(shù)

β的度數(shù)

EC的長(zhǎng)度

測(cè)傾器DECF的高度

40°

45°

53

1.5

請(qǐng)你幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求出鄭州會(huì)展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,DAC的中點(diǎn),EBC延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)AAHBE,連接ED并延長(zhǎng)交ABF,交AHH.

(1)求證:AHCE;

(2)如果AB4AF,EH8,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案