【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
【答案】(1)證明見解析;(2)當(dāng)n=5時(shí),一邊長為37的直角三角形另兩邊的長分別為12,35.
【解析】
(1)根據(jù)題意只需要證明a2+b2=c2,即可解答
(2)根據(jù)題意將n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
∴a2+b2=c2,
∵n為正整數(shù),
∴a、b、c是一組勾股數(shù);
(2)解:∵n=5
∴a= (m2﹣52),b=5m,c= (m2+25),
∵直角三角形的一邊長為37,
∴分三種情況討論,
①當(dāng)a=37時(shí), (m2﹣52)=37,
解得m=±3 (不合題意,舍去)
②當(dāng)y=37時(shí),5m=37,
解得m= (不合題意舍去);
③當(dāng)z=37時(shí),37= (m2+n2),
解得m=±7,
∵m>n>0,m、n是互質(zhì)的奇數(shù),
∴m=7,
把m=7代入①②得,x=12,y=35.
綜上所述:當(dāng)n=5時(shí),一邊長為37的直角三角形另兩邊的長分別為12,35.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2tx+2.
(1)求拋物線的對稱軸(用含t的代數(shù)式表示);
(2)將點(diǎn)A(﹣1,3)向右平移5個(gè)單位長度,得到點(diǎn)B.
①若拋物線經(jīng)過點(diǎn)B求t的值;
②若拋物線與線段AB恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,如果ɑ,β都為銳角,且tanɑ=,tanβ=,則ɑ+β=___________;
(2)如果ɑ,β都為銳角,當(dāng)tanɑ=5,tanβ=時(shí),在圖2的正方形網(wǎng)格中,利用已作出的銳角ɑ,畫出∠MON,使得∠MON=ɑ-β.此時(shí)ɑ-β=__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某個(gè)斜坡上,看到對面某高樓上方有一塊宜傳“中國國際進(jìn)口博覽會”的豎直標(biāo)語牌.小明在點(diǎn)測得標(biāo)語牌頂端D處的仰角為,并且測得斜坡的坡度為(在同一條直線上),已知斜坡長米,高樓高米(即米),則標(biāo)語牌的長是( )米.(結(jié)果保留小數(shù)點(diǎn)后一位)(參考數(shù)據(jù):, , ,)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機(jī)伴我健康行”主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行“手機(jī)使用目的”和“每周使用手機(jī)時(shí)間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計(jì)圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線的頂點(diǎn)為A(﹣1,4),且經(jīng)過點(diǎn)B(﹣2,3),與x軸分別交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).
(1)求該拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)如圖1,點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),且在直線OB的上方,過點(diǎn)M作x軸的平行線與直線OB交于點(diǎn)N,連接OM.
①求MN的最大值;
②當(dāng)△OMN為直角三角形時(shí),直接寫出點(diǎn)M的坐標(biāo);
(3)如圖2,過點(diǎn)A的直線交x軸于點(diǎn)E,且AE∥y軸,點(diǎn)P是拋物線上A、D之間的一個(gè)動(dòng)點(diǎn),直線PC、PD與AE分別交于F、G兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG的和是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(m>0)與x軸交于A,B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),頂點(diǎn)為C,拋物線與y軸交于點(diǎn)D,直線CA交y軸于E,且.
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)將△BCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B與點(diǎn)A重合,點(diǎn)O恰好落在y軸上,
①求直線CE的解析式;
②求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx(k>0)與雙曲線y=交于A、B兩點(diǎn),BC⊥x軸于C,連接AC交y軸于D,下列結(jié)論:①A、B關(guān)于原點(diǎn)對稱;②△ABC的面積為定值;③D是AC的中點(diǎn);④S△AOD=.其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com