【題目】對(duì),定義一種新運(yùn)算,規(guī)定:(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.
(1)求,的值;
(2)若關(guān)于的不等式組 恰好有2個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
【答案】(1)a=3,b=2;(3) ≤p<2
【解析】
(1)根據(jù)題中的新定義列出關(guān)于a與b的方程組,求出方程組的解即可得到a與b的值;
(2)利用題中的新定義化簡(jiǎn)已知不等式組,求出解集,根據(jù)關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,確定p的范圍即可.
(1)根據(jù)題意得: ,
①+②得:3a=9,即a=3,
把a=3代入①得:b=2,
故a,b的值分別為3和2;
(2)根據(jù)題意得:
由①得:m≤,
由②得:m>p-3,
∴不等式組的解集為p-3<m≤,
∵不等式組恰好有2個(gè)整數(shù)解,即m=0,1,
∴-1≤p-3<0,
解得≤p<2,
即實(shí)數(shù)P的取值范圍是≤p<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)是1,小正方形的頂點(diǎn)叫作格點(diǎn)),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o平面直角坐標(biāo)系中按要求畫圖和解答下列問(wèn)題:
(1)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△CA1B1,畫出△CA1B1;
(2)作出△ABC關(guān)于點(diǎn)A成中心對(duì)稱的△AB2C2;
(3)設(shè)AC2與y軸交于點(diǎn)D,則△B1DC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)A(-2,0).點(diǎn)D在y軸上,連接AD并將它沿x軸向右平移至BC的位置,且點(diǎn)B坐標(biāo)為(4,0),連接CD,OD=AB.
(1)線段CD的長(zhǎng)為 ,點(diǎn)C的坐標(biāo)為 ;
(2)如圖2,若點(diǎn)M從點(diǎn)B出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿著x軸向左運(yùn)動(dòng),同時(shí)點(diǎn)N從原點(diǎn)O出發(fā),以相同的速度沿折線OD→DC運(yùn)動(dòng)(當(dāng)N到達(dá)點(diǎn)C時(shí),兩點(diǎn)均停止運(yùn)動(dòng)).假設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①t為何值時(shí),MN∥y軸;
②求t為何值時(shí),S△BCM=2S△ADN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線l1:與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線l2:與x軸交于點(diǎn)C,與直線l1交于點(diǎn)P.
(1)當(dāng)k=1時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖1,點(diǎn)D為PA的中點(diǎn),過(guò)點(diǎn)D作DE⊥x軸于E,交直線l2于點(diǎn)F,若DF=2DE,求k的值;
(3)如圖2,點(diǎn)P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長(zhǎng)線交直線l1于點(diǎn)R,若PR=PC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在解一元二次方程時(shí),他是這樣做的:
(1)小明的解法從第 步開(kāi)始出現(xiàn)錯(cuò)誤;此題的正確結(jié)果是 .
(2)用因式分解法解方程:x(2x-1)=3(2x-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,…按照此規(guī)律繼續(xù)下去,則S2016的值為( )
A. ()2013B. ()2014C. ()2013D. ()2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解不等式2(4x-1)≥5x-8,并把它的解集在數(shù)軸上表示出來(lái).
(2)如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,0),B(-6,-2)C(-2,-5).將△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度,得到△A1B1C1.
①在平面直角坐標(biāo)系xOy中畫出△A1B1C1.
②求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸相交于O、A兩點(diǎn)(其中O為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)P(2,2a)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(其中B、C不重合),連接AP交y軸于點(diǎn)N,連接BC和PC.
(1)時(shí),求拋物線的解析式和BC的長(zhǎng);
(2)如圖時(shí),若AP⊥PC,求的值;
(3)是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com