精英家教網 > 初中數學 > 題目詳情
已知,如圖所示,∠BAC=90°,AD是斜邊BC上的高,AC=6,CD=4,則BD=   
【答案】分析:根據已知及相似三角形的判定方法可得到△CAD∽△CBA,根據相似比相等即可求得BC的長,已知CD的長,則不難求得BD的長.
解答:解:∵∠BAC=90°,AD是斜邊BC上的高,AC=6,CD=4,
∴∠BAC=∠ADC=90°
∵∠C=∠C
∴△CAD∽△CBA
∴CA:CB=CD:CA
,解得:CB=9
∴BD=BC-CD=9-4=5
點評:此題考查了相似三角形的判定:
①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

7、已知:如圖所示,直線a,b都與直線c相交,給出下列條件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖所示,Rt△ABC的周長為4+2
3
,斜邊AB的長為2
3
,則Rt△ABC的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

22、已知:如圖所示,四邊形ABCD是矩形,對角線AC,BD相交于點O,CE∥DB,交AB的延長線于點E,AC與CE相等嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

24、已知:如圖所示,在△ABC中,AB=AC,E在CA延長線上,AE=AF,AD是高,試判斷EF與BC的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖所示,正比例函數y=ax的圖象與反比例函數y=
kx
的圖象交于點A(3,2).
(1)試確定上述正比例函數和反比例函數的表達式;
(2)M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,求M點坐標.

查看答案和解析>>

同步練習冊答案