【題目】如圖,在ABC中,點(diǎn)EBC上,CDABEFAB,垂足分別為D、F

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=115°,求∠ACB的度數(shù).

【答案】1)平行,理由見(jiàn)試題解析;(2115°

【解析】

試題(1)根據(jù)垂直于同一條直線的兩條直線互相平行即可得出答案;(2)先根據(jù)已知條件判斷出BCDG,再根據(jù)兩直線平行同位角相等即可得出結(jié)論.

解:(1)CD平行于EF,

理由是:∵CDAB,EFAB,

∴∠CDF=EFB=90°,

CDEF;

(2)CDEF,∴∠2=DCB,∵∠1=2,∴∠1=DCB,BCDG,

∴∠3=ACB,∵∠3=115°,∴∠ACB=115°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4BC=8,點(diǎn)E,F分別在ADBC上,將ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①四邊形CFHE是菱形;②EC平分∠DCH;③線段BF的取值范圍為3BF4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=.其中正確的結(jié)論是()

A.①②③④B.①④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E、FG、H分別為四邊形ABCD四邊之中點(diǎn).

1)求證:四邊形EFGH為平行四邊形;

2)當(dāng)ACBD滿足    時(shí),四邊形EFGH為菱形.當(dāng)ACBD滿足    時(shí),四邊形EFGH為矩形.當(dāng)AC、BD滿足    時(shí),四邊形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,解決下列問(wèn)題:

1)兩個(gè)班共有女生多少人?

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國(guó)旗隊(duì).請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求這兩人來(lái)自同一班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副普通撲克牌中的4張;黑桃2,紅心3,梅花4,黑桃5,洗勻后正面朝下放在桌面上.

(1)從中隨機(jī)抽取一張牌是黑桃的概率是多少?

(2)從中隨機(jī)抽取一張,再?gòu)氖O碌呐浦须S機(jī)抽取另一張. 請(qǐng)用表格或樹(shù)狀圖表示抽取的兩張牌牌面數(shù)字所有可能出現(xiàn)的結(jié)果,并求抽取的兩張牌牌面數(shù)字之和大于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD,以頂點(diǎn)A為圓心,AD長(zhǎng)為半徑,AB邊上截取AE=AD,用尺規(guī)作圖法作出∠BAD的角平分線AG,AD=5,DE=6,AG的長(zhǎng)是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)購(gòu)買(mǎi)甲、乙兩種樹(shù)苗進(jìn)行綠化,購(gòu)買(mǎi)一棵甲種樹(shù)苗的價(jià)錢(qián)比購(gòu)買(mǎi)一棵乙種樹(shù)苗的價(jià)錢(qián)多 10 元錢(qián),已知購(gòu)買(mǎi) 20 棵甲種樹(shù)苗、30 棵乙種樹(shù)苗共需 1 200 元錢(qián).

1)求購(gòu)買(mǎi)一棵甲種、一棵乙種樹(shù)苗各多少元?

2)社區(qū)決定購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共 400 棵,總費(fèi)用不超過(guò) 10 600 元,那么該社區(qū)最多可以購(gòu)買(mǎi)多少棵甲種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)B、C為線段AD上的兩點(diǎn),AB=BC=CD,點(diǎn)E為線段CD的中點(diǎn),點(diǎn)F為線段AD的三等分點(diǎn),若BE=14,則線段EF=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

如圖1,⊙O1⊙O2外切于點(diǎn)C,AB⊙O1⊙O2外公切線,A、B為切點(diǎn),

求證:AC⊥BC

證明:過(guò)點(diǎn)C⊙O1⊙O2的內(nèi)公切線交ABD,

∵DA、DC⊙O1的切線

∴DA=DC.

∴∠DAC=∠DCA.

同理∠DCB=∠DBC.

∵∠DAC+∠DCA+∠DCB+∠DBC=180°,

∴∠DCA+∠DCB=90°.

AC⊥BC.

根據(jù)上述材料,解答下列問(wèn)題:

(1)在以上的證明過(guò)程中使用了哪些定理?請(qǐng)寫(xiě)出兩個(gè)定理的名稱或內(nèi)容;

(2)以AB所在直線為x軸,過(guò)點(diǎn)C且垂直于AB的直線為y軸建立直角坐標(biāo)系(如圖2),已知A、B兩點(diǎn)的坐標(biāo)為(﹣4,0),(1,0),求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線y=ax2+bx+c的函數(shù)解析式;

(3)根據(jù)(2)中所確定的拋物線,試判斷這條拋物線的頂點(diǎn)是否落在兩圓的連心O1O2上,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案