【題目】為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊(duì)承包地鐵1號(hào)線的某段修建工作,從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的3倍;若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作10天完成.

求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

已知甲隊(duì)每天的施工費(fèi)用為萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為萬(wàn)元,工程預(yù)算的施工費(fèi)用為500萬(wàn)元,為縮短工期,擬安排甲、乙兩隊(duì)同時(shí)開(kāi)工合作完成這項(xiàng)工程,那么工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需增加多少萬(wàn)元?

【答案】乙隊(duì)單獨(dú)完成這項(xiàng)工程需20天,則甲隊(duì)單獨(dú)完成這項(xiàng)工作所需天數(shù)是60天; 10萬(wàn)元.

【解析】

1)設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需x天,則甲隊(duì)單獨(dú)完成這項(xiàng)工作所需天數(shù)是3x天,則甲隊(duì)的工效為,乙隊(duì)的工效為,由已知得:甲隊(duì)工作了30天,乙隊(duì)工作了10天完成,列方程得:,解出即可,要檢驗(yàn);

2)根據(jù)(1)中所求得出甲、乙合作需要的天數(shù),進(jìn)而求出總費(fèi)用,即可得出答案.

設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需x天,則甲隊(duì)單獨(dú)完成這項(xiàng)工作所需天數(shù)是3x天,

依題意得:,

解得,

檢驗(yàn),當(dāng)時(shí),,

所以原方程的解為

所以

答:乙隊(duì)單獨(dú)完成這項(xiàng)工程需20天,則甲隊(duì)單獨(dú)完成這項(xiàng)工作所需天數(shù)是60天;

設(shè)甲、乙兩隊(duì)合作完成這項(xiàng)工程需要y天,

則有,

解得

需要施工的費(fèi)用:萬(wàn)元

,

工程預(yù)算的費(fèi)用不夠用,需要追加預(yù)算10萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購(gòu)物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹(shù)狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是 三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過(guò)三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成按照此規(guī)律,第個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連CD.則下列說(shuō)法錯(cuò)誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CC、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱

DOE兩點(diǎn)關(guān)于CD所在直線對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),新能源汽車以其舒適環(huán)保、節(jié)能經(jīng)濟(jì)的優(yōu)勢(shì)受到熱捧,隨之而來(lái)的就是新能汽車銷量的急速增加,當(dāng)前市場(chǎng)上新能漂汽車從動(dòng)力上分純電動(dòng)和混合動(dòng)力兩種,從用途上又分為乘用式和商用式兩種,據(jù)中國(guó)汽車工業(yè)協(xié)會(huì)提供的信息,2017年全年新能源乘用車的累計(jì)銷量為57.9萬(wàn)輛,其中,純電動(dòng)乘用車銷量為46.8萬(wàn)輛,混合動(dòng)力乘用車銷量為11.1萬(wàn)輛; 2017年全年新能源商用車的累計(jì)銷量為19.8萬(wàn)輛,其中,純電動(dòng)商用車銷量為18.4萬(wàn)輛,混合動(dòng)力商用車銷量為1.4萬(wàn)輛,請(qǐng)根據(jù)以上材料解答下列問(wèn)題:

(1)請(qǐng)用統(tǒng)計(jì)表表示我國(guó)2017年新能源汽車各類車型銷量情況;

(2)小穎根據(jù)上述信息,計(jì)算出2017年我國(guó)新能源各類車型總銷量為77.7萬(wàn)輛,并繪制了“2017年我國(guó)新能源汽車四類車型銷量比例扇形統(tǒng)計(jì)圖,如圖1,請(qǐng)你將該圖補(bǔ)充完整(其中的百分?jǐn)?shù)精確到0.1%);

(3)2017年我國(guó)新能源乘用車銷量最高的十個(gè)城市排名情況如圖2,請(qǐng)根據(jù)圖2中信息寫出這些城市新能源乘用車銷售情況的特點(diǎn)(寫出一條即可);

(4)數(shù)據(jù)顯示,201813月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準(zhǔn),參加社會(huì)實(shí)踐的大學(xué)生小王想對(duì)其中兩個(gè)廠家進(jìn)行深入調(diào)研,他將四個(gè)完全相同的乒乓球進(jìn)行編號(hào)(用“1,2,3,4”依次對(duì)應(yīng)上述四個(gè)廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個(gè)乒乓球,根據(jù)乒乓球上的編號(hào)決定要調(diào)研的廠家.求小王恰好調(diào)研比亞迪江淮這兩個(gè)廠家的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】物華小區(qū)停車場(chǎng)去年收費(fèi)標(biāo)準(zhǔn)如下:中型汽車的停車費(fèi)為600/輛,小型汽車的停車費(fèi)為400/輛,停滿車輛時(shí)能收停車費(fèi)23000元,今年收費(fèi)標(biāo)準(zhǔn)上調(diào)為:中型汽車的停車費(fèi)為1000/輛,小型汽車的停車費(fèi)為600/輛,若該小區(qū)停車場(chǎng)容納的車輛數(shù)沒(méi)有變化,今年比去年多收取停車費(fèi)13000元.

1)該停車場(chǎng)去年能停中、小型汽車各多少輛?

2)今年該小區(qū)因建筑需要縮小了停車場(chǎng)的面積,停車總數(shù)減少了11輛,設(shè)該停車場(chǎng)今年能停中型汽車輛,小型汽車有輛,停車場(chǎng)收取的總停車費(fèi)為元,請(qǐng)求出關(guān)于的函數(shù)表達(dá)式;

3)在(2)的條件下,若今年該停車場(chǎng)停滿車輛時(shí)小型汽車的數(shù)量不超過(guò)中型汽車的2倍,則今年該停車場(chǎng)最少能收取的停車費(fèi)共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=﹣x2+x+c與x軸交于點(diǎn)M(x1,0)N(x2,0)兩點(diǎn),與y軸交于點(diǎn)H.

(1)若∠HMO=45°,∠MHN=105°時(shí),求函數(shù)解析式;

(2)若|x1|2+|x2|2=1,當(dāng)點(diǎn)Q(b,c)在直線上時(shí),求二次函數(shù)y=﹣x2+x+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形 ABCD ,點(diǎn) P AD ,AB= ,AP=1.將直角尺的頂點(diǎn)放在 P ,直角尺的兩邊分別交 AB、BC 于點(diǎn) E、F,連接 EF(如圖 1).當(dāng)點(diǎn) E 與點(diǎn) B 重合時(shí)點(diǎn) F 恰好與點(diǎn) C 重合(如 2).將直角尺從圖 2 中的位置開(kāi)始,繞點(diǎn) P 順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn) E 和點(diǎn) A 重合時(shí)停止在這個(gè)過(guò)程 中,從開(kāi)始到停止,線段 EF 的中點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案