【題目】如圖,菱形ABCD的周長為8m,高AE的長為cm,則對角線BD的長為( )
A.2cm B.3cm C.cm D.2cm
科目:初中數學 來源: 題型:
【題目】為響應國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.
(1)求BT的長(不考慮其他因素).
(2)一般正常人從發(fā)現危險到做出剎車動作的反應時間是0.2s,從發(fā)現危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是,請判斷該車大燈的設計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.
(參考數據:sin22°≈,tan22°≈,sin31°≈,tan31°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關于⊙O的“反演點”.
如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關于⊙O的反演點,求A′B′的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分6分)如圖,已知AB∥DC,AE平分∠BAD,CD與AE相交于點F,∠CFE=∠E.試說明AD∥BC.完成推理過程:
∵AB∥DC(已知)
∴∠1=∠CFE( )
∵AE平分∠BAD(已知)
∴∠1= ∠2 (角平分線的定義)
∵∠CFE=∠E(已知)∴∠2= (等量代換)
∴AD∥BC( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,如果點F是弧EC的中點,聯(lián)結FB,那么tan∠FBC的值為 .
考點:全等三角形的判定與性質;角平分線的性質;矩形的性質;圓心角、弧、弦的關系;解直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉是一種重要的圖形變換,當圖形中有一組鄰邊相等時,往往可以通過旋轉解決問題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點D順時針方向旋轉60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎上,求四邊形ABCD的面積.
[類比應用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點:幾何變換綜合題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在△ABC中,∠A=40°.
(1)如圖(1)BO、CO是△ABC的內角角平分線,且相交于點O,求∠BOC;
(2)如圖(2)若BO、CO是△ABC的外角角平分線,且相交于點O,求∠BOC;
(3)如圖(3)若BO、CO分別是△ABC的一內角和一外角角平分線,且相交于點O,求∠BOC;
(4)根據上述三問的結果,當∠A=n°時,分別可以得出∠BOC與∠A有怎樣的數量關系(只需寫出結論).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com