【題目】如圖:ΔABE≌ΔACD,AB=10cm,∠A=60°,∠B=30°,則AD=_____ cm,∠ADC=_____。

【答案】5,90°

【解析】試題分析:此題主要考查了全等三角形的性質,以及三角形內角和定理和直角三角形的性質,關鍵是掌握全等三角形的對應邊相等,全等三角形的對應角相等.首先根據全等三角形的性質可得C=B=30°,AC=AB=10cm,再根據三角形內角和計算出ADC的度數(shù),再根據直角三角形的性質可得AD=AC=5cm

解:∵△ABE≌△ACD,

∴∠C=∠B=30°,AC=AB=10cm,

∵∠A=60°,

∴∠ADC=180°-60°-30°=90°

AD=AC=5cm,

故答案為:590°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2016浙江省舟山市第19題)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,ABC=ACB=36°,改建后頂點D在BA的延長線上,且BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)

(參考數(shù)據:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣x=0的根是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是( 。

A. 兩個全等三角形一定是相似形 B. 兩個等腰三角形一定相似

C. 兩個等邊三角形一定相似 D. 兩個等腰直角三角形一定相似

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016重慶市第26題)如圖1,二次函數(shù)的圖象與一次函數(shù)y=kx+b(k0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內,點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k0)的圖象與x軸的交點,過點B作x軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;

(2)點P是線段AB上一點,點D是線段BC上一點,PD//x軸,射線PD與拋物線交于點G,過點P作PEx軸于點E,PFBC于點F,當PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+BH的值最小,求點H的坐標和GH+BH的最小值;

(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)沿直線BC平移,平移的距離是t(t0),平移后拋物線使點A,點C的對應點分別為點A,點C;當ACK是直角三角形時,求t的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關系?并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B和點C分別為∠MAN兩邊上的點,AB=AC.

(1)按下列語句畫出圖形:(要求不寫作法,保留作圖痕跡)

ADBC,垂足為D;

② ∠BCN的平分線CEAD的延長線交于點E;

③ 連結BE.

(2)在完成(1)后不添加線段和字母的情況下,請你寫出除△ABD≌△ACD外的兩對全等三角形: ;并選擇其中的一對全等三角形予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在墻壁上用兩個釘子就能固定一根橫放的木條,這樣做根據的道理是( )

A. 兩點確定一條直線 B. 兩點確定一條線段

C. 兩點之間,直線最短 D. 兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東省聊城市第25題)如圖,已知拋物線y=ax2+bx+c經過點A(3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點D,DE垂直與x軸,垂足為E,l是拋物線的對稱軸,點F是拋物線的頂點.

(1)求出二次函數(shù)的表達式以及點D的坐標;

(2)若RtAOC沿x軸向右平移到其直角邊OC與對稱軸l重合,再沿對稱軸l向上平移到點C與點F重合,得到RtA1O1F,求此時RtA1O1F與矩形OCDE重疊部分的圖形的面積;

(3)若RtAOC沿x軸向右平移t個單位長度(0<t6)得到RtA2O2C2,RtA2O2C2與RtOED重疊部分的圖形面積記為S,求S與t之間的函數(shù)表達式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案