【題目】如圖,AB是半圓O的直徑,按以下步驟作圖:

1)分別以A,B為圓心,大于AO長為半徑作弧,兩弧交于點P,連接OP與半圓交于點C;

2)分別以AC為圓心,大于AC長為半徑作弧,兩弧交于點Q,連接OQ與半圓交于點D

3)連接AD,BD,BCBDOC交于點 E.根據(jù)以上作圖過程及所作圖形,下列結(jié)論:①BD平分∠ABC;②BCOD;③CEOE;④AD2ODCE;所有正確結(jié)論的序號是( 。

A.①②B.①④C.②③D.①②④

【答案】D

【解析】

由作圖可知,OP垂直平分線段AB,OQ平分∠AOC,利用平行線的判定,相似三角形的性質(zhì)一一判斷即可.

解:由作圖可知,OP垂直平分線段AB,OQ平分∠AOC,連接CD,

,

∴∠ABD=CBD,

BD平分∠ABC,正確;

OPAB,

∴∠AOC=∠BOC90°,

∴∠AODAOC45°,

OBOC

∴∠OBC45°,

∴∠AOD=∠OBC45°

ODBC,故②正確;

ODBC

1,

OEEC,故③錯誤;

∵∠DCE=∠DCO,∠CDE=∠COD45°,

∴△DCE∽△OCD,

,

CD2ODCE,

,

ADCD,

AD2ODCE,故④正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3n).

1)填空:m   ,n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當(dāng)x為何值時,kx+b≥(請直接寫出答案)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過的三個頂點,其中點,點,軸,點是直線下方拋物線上的動點.

1)求拋物線的解析式;

2)過點且與軸平行的直線與直線、分別交與點、,當(dāng)四邊形的面積最大時,求點的坐標(biāo);

3)當(dāng)點為拋物線的頂點時,在直線上是否存在點,使得以、為頂點的三角形與相似,若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.

(1)求證:△ABP∽△PCD;

(2)若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2ax1,y2ax2ax1(其中a為常數(shù),且a0)

1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;

2)當(dāng)a時,設(shè)y1=-ax2ax1x軸分別交于M,N兩點(MN的左邊)y2ax2ax1x軸分別交于E,F兩點(EF的左邊),觀察M,N,E,F四點坐標(biāo),請寫出一個你所得到的正確結(jié)論,并說明理由;

3)設(shè)上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD

1)求該拋物線的表達(dá)式;

2)點P為該拋物線上一動點(與點BC不重合),設(shè)點P的橫坐標(biāo)為t

①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;

②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖象交于點,且點的橫坐標(biāo)為.過點軸交反比例函數(shù)的圖象于點,連接

1)求反比例函數(shù)的表達(dá)式.

2)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將矩形繞點順時針旋轉(zhuǎn)得矩形,若,,則圖中陰影部分的面積為__________

查看答案和解析>>

同步練習(xí)冊答案