二次函數(shù)的最大值是( )
A.
B.-
C.-5
D.-
【答案】分析:根據(jù)二次函數(shù)的性質,二次項系數(shù)為-3,故拋物線開口向下,函數(shù)有最大值,當x=5時即可得到最大值.
解答:解:當x=5時,y最大值=
故選A.
點評:此題考查了二次函數(shù)的最值問題,根據(jù)二次項系數(shù)的符號判斷出拋物線的開口方向是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲;根據(jù)“兩點之間,線段最短”,并運用軸對稱的性質,可以在一條直線上找到一點,使得此點到這條直線同側兩定點之間的距離之和最短.
這種數(shù)形結合的思想方法,非常有利于解決一些數(shù)學和實際問題中的最大(。┲祮栴}.請你嘗試解決一下問題:
(1)在圖1中,拋物線所對應的二次函數(shù)的最大值是
4
4
;
(2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線l)的同側,且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長度最短,請你:
①作圖確定水塔的位置;
②求出所需水管的長度(結果用準確值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此問題可以通過數(shù)形結合的方法加以解決,具體步驟如下:
①如圖3中,作線段AB=6,分別過點A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一點P,可設AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即為線段
PC
PC
和線段
PD
PD
長度之和的最小值,最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象經過A(-1,0)、B(2,3)兩點,此二次函數(shù)的解析式是
y=-x2+2x+3
y=-x2+2x+3
;此拋物線的對稱軸是
x=1
x=1
,二次函數(shù)的最大值是
4
4

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省大豐市第四中學九年級上學期期末考試數(shù)學試卷(帶解析) 題型:填空題

二次函數(shù)的最大值是          

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省大豐市九年級上學期期末考試數(shù)學試卷(解析版) 題型:填空題

二次函數(shù)的最大值是          

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省大豐市九年級上學期期末考試數(shù)學試卷(解析版) 題型:填空題

二次函數(shù)的最大值是          

 

查看答案和解析>>

同步練習冊答案