【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BCAC上,DEAB,過(guò)點(diǎn)EEFDE,交BC的延長(zhǎng)線于點(diǎn)F

1)求∠F的度數(shù);

2)若CE=4,求DF的長(zhǎng).

【答案】(1)30°;(2)8

【解析】

1)根據(jù)平行線的性質(zhì)可得∠EDC=B=60°,根據(jù)三角形內(nèi)角和定理即可求解;

2)易證EDC是等邊三角形,再根據(jù)直角三角形的性質(zhì)即可求解.

解:(1)∵△ABC是等邊三角形,

∴∠B=60°

DEAB,

∴∠EDC=B=60°,

EFDE,

∴∠DEF=90°,

∴∠F=90°-EDC=30°;

2)∵∠ACB=60°,∠EDC=60°

∴△EDC是等邊三角形.

ED=EC=4,

∵∠DEF=90°,∠F=30°,

DF=2DE=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在距樹(shù)米的地面上平放一面鏡子,人退后到距鏡子米的處,在鏡子里恰巧看見(jiàn)樹(shù)頂,若人眼距地面米.

求樹(shù)高;

是位似圖形嗎?若是,請(qǐng)指出位似中心;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B⊙O上,直線AC⊙O的切線,OC⊥OB,連接ABOC于點(diǎn)D

1ACCD相等嗎?為什么?

2)若AC=2AO=,求OD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩張長(zhǎng)為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,當(dāng)兩條紙條垂直時(shí),菱形的周長(zhǎng)有最小值8,那么菱形周長(zhǎng)的最大值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用個(gè)相同的小長(zhǎng)方形與個(gè)小正方形鑲嵌而成的正方形圖案,已知該圖案的面積為,小正方形的面積為,若用表示小長(zhǎng)方形的兩邊長(zhǎng)() ,請(qǐng)觀察圖案,指出以下關(guān)系式中,不正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為邊在AB的右側(cè)作ADE,且∠DAE=90°AD=AE.連接CE

1)如圖1,若點(diǎn)DBC邊上,則∠BCE=______度;

2)如圖2,若點(diǎn)DBC的延長(zhǎng)線上運(yùn)動(dòng).

①∠BCE的度數(shù)是否發(fā)生變化?請(qǐng)說(shuō)明理由;

②若BC=6,CD=2,求ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某園林專(zhuān)業(yè)戶(hù)計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬(wàn)元)

2

種植樹(shù)木利潤(rùn)y1(萬(wàn)元)

4

種植花卉利潤(rùn)y2(萬(wàn)元)

2

(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

(2)如果這位專(zhuān)業(yè)戶(hù)以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

(3)若該專(zhuān)業(yè)戶(hù)想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的邊AC上取一點(diǎn),使得AB=AD,若點(diǎn)D恰好在BC的垂直平分線上,寫(xiě)出∠ABC與∠C的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大的正方形內(nèi),若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和

查看答案和解析>>

同步練習(xí)冊(cè)答案