【題目】每個(gè)人都應(yīng)懷有對水的敬畏之心,從點(diǎn)滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個(gè)月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計(jì)量不會發(fā)生改變的是( 。

用水量x(噸)

3

4

5

6

7

頻數(shù)

1

2

5

4﹣x

x

A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差

【答案】B

【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結(jié)合前兩組的頻數(shù)知第6、7個(gè)數(shù)據(jù)的平均數(shù),可得答案.

6噸和7噸的頻數(shù)之和為4-x+x=4,

∴頻數(shù)之和為1+2+5+4=12,

則這組數(shù)據(jù)的中位數(shù)為第6、7個(gè)數(shù)據(jù)的平均數(shù),即=5,

∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,

∵后兩組頻數(shù)和等于4,小于5,

∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為今年將要參加中考的好友小李制作了一個(gè)(如圖)正方體禮品盒,六面上各有一字,連起來就是預(yù)祝中考成功,其中預(yù)的對面是的對面是,則它的平面展開圖可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村在推進(jìn)美麗鄉(xiāng)村的活動中,決定建設(shè)幸福廣場,計(jì)劃鋪設(shè)相同大小規(guī)格的紅色和藍(lán)色地磚.經(jīng)過調(diào)查,獲取信息如下:

購買數(shù)量低于5000

購買數(shù)量不低于5000

紅色地磚

原價(jià)銷售

以八折銷售

藍(lán)色地磚

原價(jià)銷售

以九折銷售

如果購買紅色地磚4000塊,藍(lán)色地磚6000塊,需付款86000元;如果購買紅色地磚10000塊,藍(lán)色地磚3500塊,需付款99000元.則紅色地磚與藍(lán)色地磚的單價(jià)各為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD是半圓O的直徑,ABD延長線上的一點(diǎn),BC⊥AE,交AE的延長線于點(diǎn)C,交半圓O于點(diǎn)E,且E的中點(diǎn).

(1)求證:AC是半圓O的切線;

(2)AD=6,AE=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠C90°,ADDB,點(diǎn)EAB的中點(diǎn),DEBC.

1)求證:BD平分∠ABC

2)連接EC,若∠A30°,DC,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的函數(shù),自變量的取值范圍是的全體實(shí)數(shù),如表是的幾組對應(yīng)值.

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請補(bǔ)充完整:

1)從表格中讀出,當(dāng)自變量是﹣2時(shí),函數(shù)值是   ;

2)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

3)在畫出的函數(shù)圖象上標(biāo)出時(shí)所對應(yīng)的點(diǎn),并寫出   

4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于AB兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn)

求雙曲線的表達(dá)式;

過動點(diǎn)且垂直于x軸的直線與直線及雙曲線的交點(diǎn)分別為BC,當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】核潛艇作為三位一體核打擊力量中的一種,對于一個(gè)國家來說,是水下核威懾的重要戰(zhàn)略武器.我國的核潛艇發(fā)展迅速,多次出色完成了戰(zhàn)略巡航任務(wù).一次,某型號核潛艇在水下400米的處以600/分鐘的速度向正東方向航行時(shí),發(fā)現(xiàn)斜上方仰角為水面上處有一可疑船只正沿著相同航向航行,跟蹤2分鐘后到達(dá)處,再次測得可疑船只在仰角為處,請根據(jù)以上條件求出可疑船只航行的速度.(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊答案